CONFIDENTIAL (Attachment Only)

1	Request IR-78:
2	
3	Please provide the confidential versions of the documents requested in CA IR 10 to 14.
4	
5	Response IR-78:
6	
7	Please refer to the following attachments for the referenced documents. A link to the UARB's
8	website with the matter number was included in the initial response and constitutes an adequate
9	response. Parties can and have entered documents from prior proceedings into evidence for
10	various later proceedings. Confidential versions of the documents are maintained on the UARB's
11	repository.
12	
13	• Confidential Attachment 1: CA IR-10 part (a) - 2013 GRA OP-05 Attachment 1.
14	• Confidential Attachment 2: CA IR-10 part (b) - 2013 GRA OP-08 Attachment 1.
15	• Confidential Attachment 3: CA IR-10 part (c - n) – NSPI 2013 Fuel Forecast Update for
16	FAM and 2013 GRA.
17	• Partially Confidential Attachment 4: CA IR-12 part (a) – 2013 ACE SBA IR-38
18	Attachment 1.
19	• Partially Confidential Attachment 5: CA IR-12 part (b) – 2013 ACE NSUARB IR-15.
20	
21	The document requested in CA IR-11 was provided. The response to CA IR-13 indicates that the
22	requested new analysis has not been performed in preparing the Application. There are no
23	previously filed materials to include as attachments for that question. CA IR-14 requests
24	information included in CA IR-10 Attachment 3.

]	Maritime Link CA IR-78 Attachment 1 REDACTED
CA IR-78 Attachment	1 has been removed due to confidentiality.

Maritime Link CA IR-78 Attachment 2 REDACTED	
CA IR-78 Attachment 2 has been removed due to confidentiality.	

Maritime Link CA IR-78 Attachment 3 REDACTED
CA IR-78 Attachment 3 has been removed due to confidentiality.

Thermal Generating	Summer	Winter	Fuel	In-Service	2013 Forecast	2011	2010	2009
Unit	Capacity	Capacity	Туре	Date	Heat Rate	Capacity	Capacity	Capacity
	MW	MW	(Supplemental)		Btu/KWh	Factor	Factor	Factor
Lingan 1	153	153	Coal (Pet Coke, Heavy Fuel Oil)	1979		71%	64%	78%
Lingan 2	153	153	Coal (Pet Coke, Heavy Fuel Oil)	1980		59%	65%	67%
Lingan 3	153	153	Coal (Pet Coke, Heavy Fuel Oil)	1983		57%	69%	70%
Lingan 4	153	153	Coal (Pet Coke, Heavy Fuel Oil)	1984		64%	72%	80%
Point Aconi	171	171	Coal, Pet Coke	1994		77%	81%	85%
Point Tupper	152	152	Coal (Pet Coke, Heavy Fuel Oil)	1987		49%	88%	82%
Trenton 5	135	150	Coal (Pet Coke, Heavy Fuel Oil)	1969		50%	57%	54%
Trenton 6	157	157	Coal (Pet Coke, Heavy Fuel Oil)	1991		89%	77%	86%
Tufts Cove 1	81	81	Natural Gas, Heavy Fuel Oil	1965		76%	82%	38%
Tufts Cove 2	93	93	Natural Gas, Heavy Fuel Oil	1972		77%	76%	57%
Tufts Cove 3	147	147	Natural Gas, Heavy Fuel Oil	1976		68%	51%	53%
Tufts Cove 4	47	49	Natural Gas	2003		63%	52%	45%
Tufts Cove 5	47	49	Natural Gas	2005		38%	39%	58%
Tufts Cove 6	47	49	Natural Gas	2011		1%	N/A	N/A

RCTVICNN['EQPFINGPVICN

1	Requ	nest IR-15:
2		
3	With	respect to the long term investment strategy for the combustion turbine fleet,
4	refer	enced on page 15:
5		
6	(a)	Please provide a table identifying each LFO combustion unit, their net capacity,
7		years when they were put in service, their capacity factors in each of previous 5
8		years, as well as the remaining service life if no additional capital is injected.
9		
10	(b)	Please quantify and compare the cost of a unit of energy produced by each of the
11		above facilities with the cost of energy produced by other generation facilities.
12		
13	(c)	What were the annual capital and maintenance expenditures on each of these units
14		in last 5 years?
15		
16	(d)	Please provide the forecasted annual capital and maintenance expenditures on each
17		of these units for years 2012 - 2016.
18		
19	(e)	Does NSPI plan to retire any of these units in the next 5 years? Please elaborate.
20		
21	(f)	Is there any other option except to refurbish all these units? Please elaborate.
22		
23	(g)	Please provide a justification that the proposed refurbishment of all these units
24		represents the most cost effective alternative, and explain why they should not be
25		decommissioned.
26		
27	(h)	It appears that a number of these units have not run for a number of years. Please
28		explain why NSPI decided to refurbish these units now?
29		

RCTVICNN['EQPHIF GPVICN

(i) Please provide copies of all studies and reports, prepared in last 5 years, which discusses refurbishment, retirement, or replacement of these units.

4 Response IR-15:

(a) Please refer to the table below.

Unit	Commission	Capacity	Heat Rate		Capa	city Factor	rs (%)	
Cint	Commission	MW	Btu/kWh	2007	2008	2009	2010	2011
Burnside 1,2,3	1976	30		2.151	0.673	4.354	2.352	1.405
Victoria Junction	1975 (Unit 1) 1976 (Unit 2)	30		0.212	0.048	0.498	0.251	0.156
Tusket	1971	25		0.233	0.000	0.102	0.120	0.003

Remaining service life is currently under assessment. Generally, these units are nearing the end of their design life. It is anticipated that there will be major component replacement (shafts, disks and other cyclic fatigue susceptible parts) and/or entire machine replacements. Ongoing assessment will guide long-term planning.

(b) The liquid fuelled Fleet (Victoria Junction, Burnside and Tusket) is significantly more expensive to operate than coal units or gas generation. This difference varies in comparison to the various generating units and the fuel costs at any given time, however, the liquid fuelled generators are several times more expensive than NS Power alternatives.

RCTVICNN['EQPHIF GPVICN

(c) Please refer to the table below for Operating and Maintenance costs. This table includes Burnside, Victoria Junction, Tusket and the LM6000 units (Tufts Cove Units 4 and 5).

1	2	
•	ن	

2008 Actual	2009 Actual	2010 Actual	2011 Actual	2012 Q3 Forecast
(\$)	(\$)	(\$)	(\$)	(\$)
1,157,785	1,196,203	1,218,045	1,383,942	1,749,481

Please refer to the table below for a summary of capital investment in the units (not including routine work). The table represents only Burnside, Victoria Junction and Tusket.

2008 Actual	2009 Actual	2010 Actual	2011 Actual	2012 Forecast	2013 ACE
(\$)	(\$)	(\$)	(\$)	(\$)	(\$)
115,799	115,943	186,454	223,394	1,984,777	2,581,490

(d) At this time there are no planned significant changes to the current operating or capital investments for these units. The long-term assessment study is currently underway and due to be completed in Q2 2013. The results of this study, in combination with any other efforts, such as the wind integration study, will determine future capital and operating for the long-term.

(e) Long-term assessment is currently underway. This study will guide any future retirement decisions.

(f) Refurbishment, while an option, is not currently planned for all these units. Other options include:

- Replacement with a dual-fuel combustion turbine unit
- Replace with gas combustion turbine

RCTVICNN['EQPHIF GPVICN

1		Combination of refurbishment and replacement
		Combination of returbishment and replacement
2		
3	(g)	Full refurbishment of these units is not currently proposed. CI 42807, the Free Turbine
4		Overhaul project submitted to the Board for approval on September 28, 2012, includes
5		only those units found to be out of compliance on the free turbine inlet guide vanes
6		cracking limits. To date, there are four Burnside units affected, and three units included
7		in the scope of the project (the project excludes Unit 4). This project does not represent
8		full scale refurbishment, but are investment to enable the units to continue to generate
9		and provide for system security and black start capability.
10		
11		The units cannot be decommissioned due to the requirement to serve. The units are
12		required for black start, and are critical power generation reserve to meet North American
13		Electric Reliability Corporation (NERC) requirements when needed. They are also
14		utilized for Volt-Ampere Reactive (VAR) support. When the unit is in synchronous
15		mode, the engine is de-coupled from the generator and VAR support is accomplished
16		through the generator spinning independently. Additionally the units must be sustainable
17		in order to support the planned 2015 retirement of Lingan 2.
18		
19	(h)	Only Burnside Unit 4 has not run in a number of years. The remaining 3 Burnside units,
20		Victoria Junction and Tusket have run for VAR support, black start and spinning reserve.
21		The functioning Burnside units required free-turbine refurbishment because cracks were
22		found in the inlet blades and the units need to run to meet system demands, spinning
23		reserve, black-start, VAR support, and to support the future shut-down of Lingan 2.
24		

Date Filed: December 21, 2012 NSPI (NSUARB) IR-15 Page 4 of 4

Please refer to Confidential Attachment 1, and Confidential Attachment 2.

(i)

The remainder of CA-IR-78 Attachment 5 has been removed due to Confidentiality.

1	Request IR-79:
2	
3	Please provide the data graphed in CA IR-30 Attachment 2 in Excel-readable form.
4	
5	Response IR-79:
6	
7	CA IR-30 Attachment 2 is the output format of the power system simulator PSS®E from
8	Siemens Power Technologies International. The only output options for these plots are
9	PostScript/PDF format and graphical display on a computer screen. There is no output of these
10	simulations compatible with Excel.

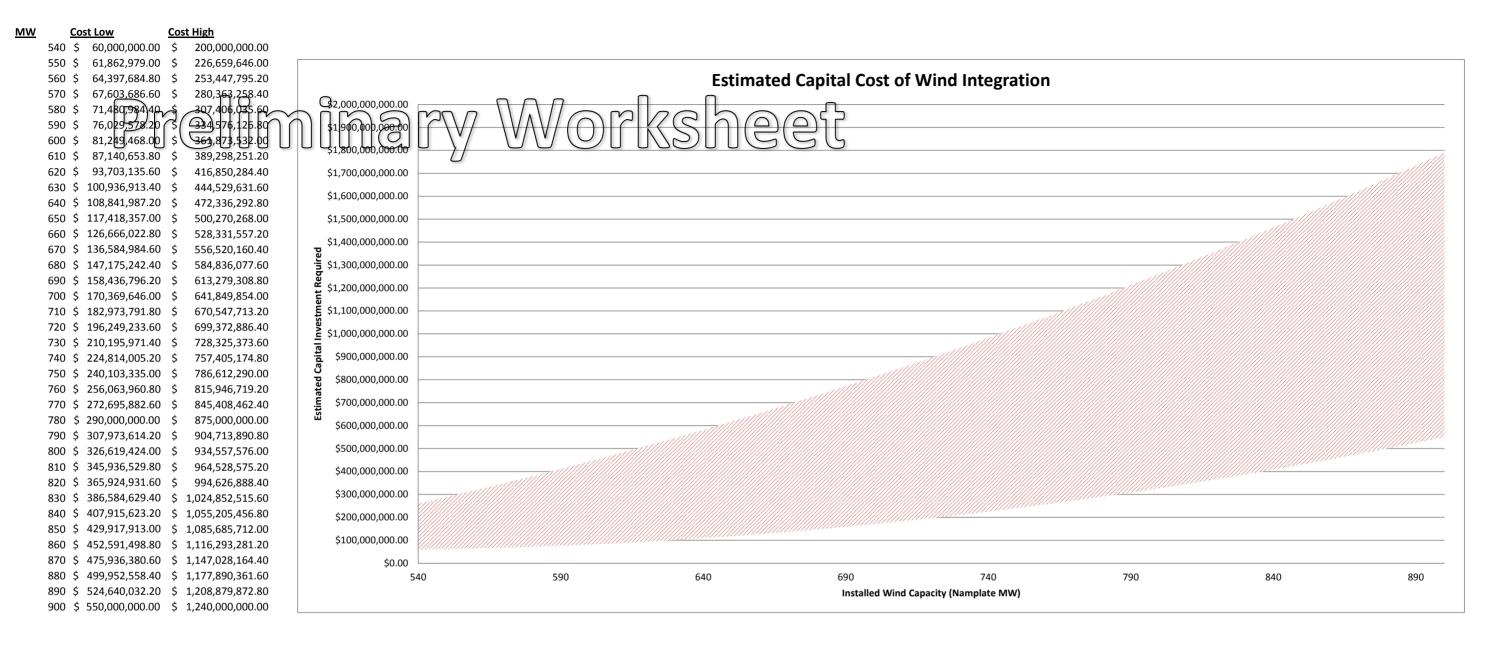
1	Request IR-80:
2	
3	The responses to CA IR 15 to 19 and 22 to 24 neither provided the requested information
4	nor claimed that NSPI has no such information. Please provide any documents in NSPI's
5	possession that are responsive to these requests.
6	
7	Response IR-80:
8	
9	As NSPML explained in response to CA IRs 15 to 19, these questions are better directed to the
10	author of the report, which is a publicly available document. NSPML is neither the author nor
11	sponsor of the report. NSPML's evidence in support of the Maritime Link, in accordance with
12	the Regulations, is contained in its Application.
13	
14	Requests 22 to 24 pertain to the Renewable Energy Integration Study. As explained in the
15	responses, that study is not yet completed. NS Power intends to file that study with the UARB
16	upon completion, since that filing is a required action item under the 2010 FAM Audit Action
17	Plan.

1	Reque	est IR-81:
2		
3	Refere	ence response to CA IR-30 Attachment 2(d):
4		
5	(a)	Please provide the calculation leading to the conclusion that "The NS Block will
6		have a capacity factor of about 68 percent." Please provide the capacity value on
7		which this capacity factor computation is based.
8		
9	(b)	Please provide the calculation leading to the conclusion that "Based on Muskrat
10		Falls surplus and the NS Block alone, the capacity factor of the Maritime Link will
11		be 60 percent"
12		
13	Respo	nse IR-81:
14		
15	We be	lieve your request to be in reference to the response to EAC IR-4 (d):
16		
17	(a)	The NS Block is delivered for 16 hours per day only. 16 hours / 24 hours = 66.7 percent
18		(approximately 68 percent).
19		
20	(b)	Please refer to NSUARB IR-65. The projected energy available for export from
21		Newfoundland and Labrador, including the NS Block, is roughly 2.96 TWh, or 60
22		percent of the 4.93 TWh annual production. Accounting for the transmission loss factor,
23		this equates to approximately 2.7 TWh (2,700,000 MWh) available to be delivered to
24		Woodbine, including the NS block. The capacity factor is therefore calculated as:
25		(2,700,000 MWh) / (500 MW x 8760 hours) = 61.4 percent, which is approximately 60
26		percent.

CONFIDENTIAL (Attachments only)

1	Requ	st IR-82:
2		
3	Refer	nce response to Liberty IR-5:
4		
5	(a)	Please provide the Liberty IR-5 attachments in excel format, with formulae
6		attached.
7		
8	(b)	Please explain how NSPI select the PIRA forecasts, rather than each of the following
9		sources:
10		
11		(i) other commercial forecasts,
12		(ii) the Energy Information Administration's Annual Energy Outlook reference
13		case, and
14		(iii) NYMEX forwards.
15		
16	(c)	Please provide all documentation in the possession of NSPI or NSPML regarding
17		the assumptions and methodology underlying the PIRA gas-price forecast.
18		
19	(d)	Please identify the source of Liberty IR-5 Attachment 2, pages 2 and 3.
20		
21	(e)	Please define and provide the source of the "M&NP Exp" in Liberty IR-5
22		Attachment 2, page 4.
23		
24	(f)	PIRA has announced that shale gas and other factors "have caused PIRA to lower
25		its longer-term price outlook for both liquids and gas." ("PIRA Energy Group
26		Releases Annual Scenario Planning Guidebook, Forecasting Long-Term Oil and
27		Gas Markets," PRWEB, February 25, 2013) If NSPI or NSPML has access to the
28		PIRA 2013 forecast, please provide the gas and oil forecasts from that document.

CONFIDENTIAL (Attachments only)


1	Respo	onse IR-82:
2		
3	(a)	Please refer to Confidential Attachments 1 and 2, provided electronically as Excel files.
4		
5	(b)	PIRA was selected because NS Power currently uses PIRA for long term forecasting.
6		Please refer to Liberty IR-4 and PC IR-10.
7		
8	(c)	Please refer to the NS Power Confidential FAM data room, binder titled "PIRA Scenario
9		Planning Service: Annual Guidebook 2012".
10		
11	(d)	Please refer to Liberty IR-17 and Liberty IR-18.
12		
13	(e)	Please refer to Liberty IR-19.
14		
15	(f)	Please refer to Confidential Attachment 3.

Maritime Link CA IR-82 Attachment 1 REDACTED
CA IR-82 Attachment 1 has been removed due to confidentiality.

Maritime Link CA IR-82 Attachment 2 REDACTED
CA IR-82 Attachment 2 has been removed due to confidentiality.
CA IN-62 Attachment 2 has been removed due to confidentiality.

Maritime Link CA IR-82	Attachment 3 REDACTED
CA IR-82 Attachment 3 has been removed d	ue to confidentiality.

1	Requ	iest IR-83:
2		
3	Rega	ording Synapse IR-18 Attachment 1:
4		
5	(a)	Please provide the spreadsheet "Integration Cost Estimate Graph (4).xlsx"
6		referenced in cell B3.
7		
8	(b)	Please provide the basis and derivation of the formulae in Synapse IR-18
9		Attachment 1:
10		
11		(i) Low Cost = $(3356.48*MW*MW-3472222.22*MW+956250000)/10000000$
12		(ii) High Cost = $=(636.57*MW*MW+1972222.22*MW-1050625000)/1000000$
13		
14	(c)	Please provide all the spreadsheets in the folder "m25ms\My
15		Documents\DataP&P\Planning\Wind\Wind Whitepaper" referenced in Synapse IR-
16		18 Attachment 1.
17		
18	Resp	onse IR-83:
19		
20	(a)	The referenced file is Synapse IR-18 Attachment 1.
21		
22	(b)	These are curves selected to fit data points derived from Synapse IR-18 Attachment 2.
23		
24	(c)	Please refer to Attachments 1 to 4, which are spreadsheets found in the specified location
25		and are preliminary in nature.

Worksheet

Low Load Case

	Estimated Cost		Estimated Cost	
Wind 780MW Case	Low (\$Millions)		High (\$Millions)	
New Gas CC Plant #1	\$	60.00	\$	100.00
New Gas CC Plant #2	\$	60.00	\$	100.00
New Gas CC Plant #3	\$	-	\$	100.00
General Transmission Upgrades & Tieline	\$	170.00	\$	275.00
Energy Storage	\$	-	\$	300.00
Total Capital Costs	Ś	290.00	Ś	875.00

Low Load Case (785MW) - Incremental costs for 250MW of wind

Estimated Cost		Estimated Cost		Estimated Cost Mid		
Low (\$Millions)		High	n (\$Millions)	<u>(\$N</u>	1illions)	
\$	-	\$	-	\$	-	
\$	60.00	\$	-	\$	-	
\$	-	\$	100.00	\$	-	
\$	170.00	\$	275.00	\$	222.50	
\$	-	\$	300.00	\$	150.00	
\$	230.00	\$	675.00	\$	372.50	

Base Load Case

		Estin	nated Cost	Estimated Cost	
Wind 900+MW Case		Low (\$Millions)		High (\$Millions)	
New Gas CC Pla	nt #1	\$	60.00	\$	100.00
New Gas CC Pla	ant #2	\$	60.00	\$	100.00
New Gas CC Pla	ant #3	\$	60.00	\$	100.00
General Transn	nission Upgrades & Tieline	\$	170.00	\$	540.00
Energy Storage	(pumped storage)	\$	200.00	\$	400.00
Total Capital Co	osts	\$	550.00	\$	1,240.00

Base Load Case (960MW) - Incremental costs for 425MW of wind

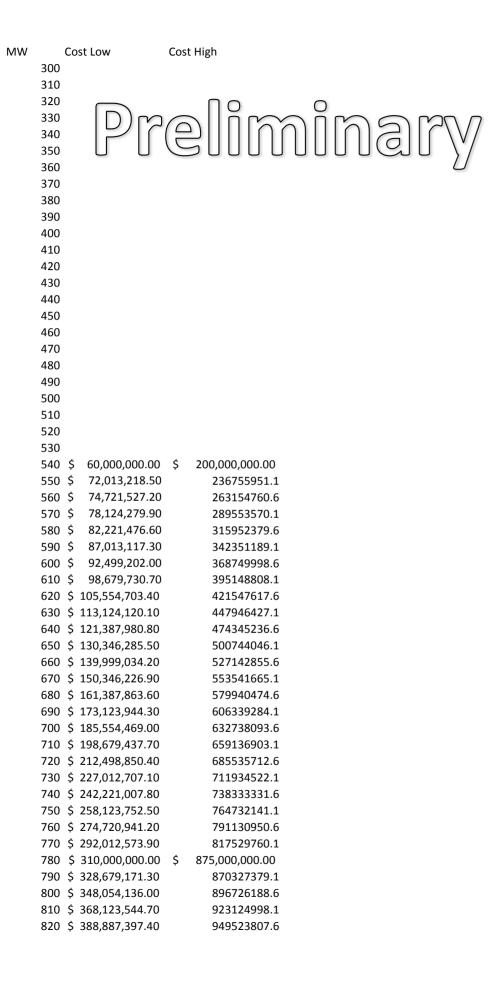
\$	490.00	\$	1,040.00	\$	655.00				
\$	200.00	\$	400.00	\$	300.00				
\$	170.00	\$	540.00	\$	355.00				
\$	60.00	\$	100.00	\$	-				
\$	60.00	\$	-	\$	-				
\$	-	\$	-						
Low	(\$Millions)	Hig	gh (\$Millions)		(\$Millions)				
Estii	mated Cost	Es:	timated Cost	Estimated Cost Mid					

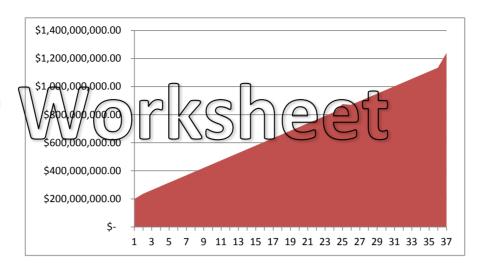
Low Load Case (785MW) - Incremental costs for 250MW of wind

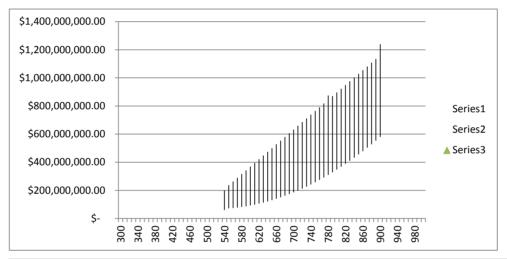
In the Low Load case we are adding a 50MW CT in the resource plan in 2019 for reserve margin. It is assumed that this CT can be run for wind integration purposes and represents either the 50MW CT in the Low cost case or the 100MW $\ensuremath{\mathsf{CT}}$ in the High cost case. Therefore we did not include a CT in the integration costs in the Low Load. Also note that the CC250MW built in 2030 in the Low Load case could be built as only the CT portion in 2019 with a HRSG added in 2030 when it is required for energy/ emissions. We did not advance the cost of the CC250 so we kept the costs on the conservative side. We then took the transmissions costs and Energy storage costs and averaged the low and high cost values to get a mid value that was modeled in Strategist (\$372.5M).

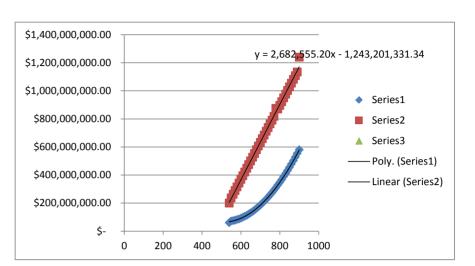
Base Load Case (960MW) - Incremental costs for 425MW of wind

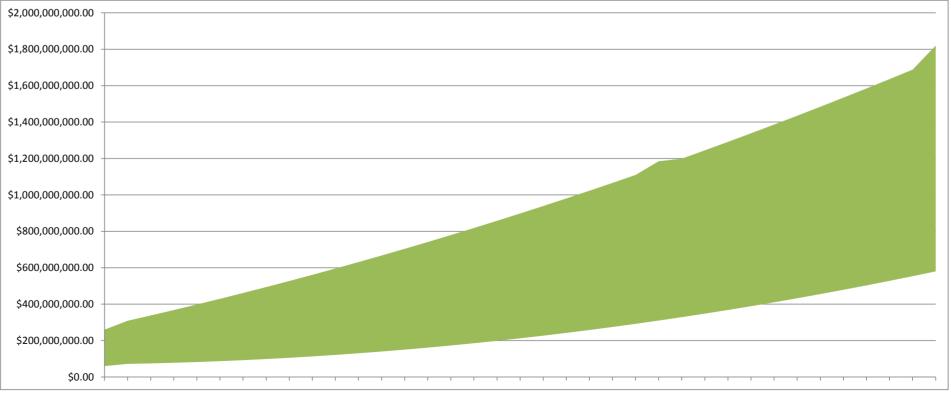
In the Base Load case we are adding a 50MW CT in the resource plan in 2019 for reserve margin. It is assumed that this CT can be run for wind integration purposes and represents either the two 50MW CT in the Low cost case or the 100MW CT in the High cost case. Therefore we did not include a CT in the integration costs in the Base Load. Also note that the CC250MW built in 2026 in the Base Load case could be built as only the CT portion in 2019 with a HRSG added in 2026 when it is required for energy/ emissions. We did not advance the cost of the CC250 so we kept the costs on the conservative side. We then took the transmissions costs and Energy storage costs and averaged the low and high cost values to get a mid value that was modeled in Strategist (\$655M).


Maritime Link CA IR-83 Attachment 1 Page 2 of 2




Worksheet


	Estin	nated Cost	Esti	mated Cost	
Wind 780MW Case	Wind 780MW Case Low (\$				
New Gas CC Plant #1	\$	60.00	\$	100.00	
New Gas CC Plant #2	\$	60.00	\$	100.00	
New Gas CC Plant #3	\$	-	\$	100.00	
General Transmission Upgrades & Tieline	\$	170.00	\$	275.00	
Energy Storage	\$	-	\$	300.00	
Total Capital Costs	Ś	290.00	Ś	875.00	


	<u>Estir</u>	nated Cost	Est	imated Cost
Wind 900+MW Case	Low	(\$Millions)	Hig	h (\$Millions)
New Gas CC Plant #1	\$	60.00	\$	100.00
New Gas CC Plant #2	\$	60.00	\$	100.00
New Gas CC Plant #3	\$	60.00	\$	100.00
General Transmission Upgrades & Tieline	\$	170.00	\$	540.00
Energy Storage (pumped storage)	\$	200.00	\$	400.00
Total Capital Costs	\$	550.00	\$	1,240.00


```
830 $ 410,345,694.10
                          975922617.1
                           1002321427
840 $ 432,498,434.80
850 $ 455,345,619.50
                           1028720236
860 $ 478,887,248.20
                           1055119046
870 $ 503,123,320.90
                           1081517855
880 $ 528,053,837.60
                           1107916665
890 $ 553,678,798.30
                           1134315474
900 $ 580,000,000.00 $ 1,240,000,000.00
910
920
930
940
950
960
970
980
990
```

540 Case	<u>Esti</u>	mated Cost Low	<u>Est</u>	imated Cost High	
New Gas CT Plant #6 New Gas CT Plant #6 New Gas CT Plant #6	\$ \ \$/}	W 60,90	\$ D		neeft
Geheral मिranेडलांडेडांडेन Upgrades । । जा । Energy Storage	Ų	-	ے ر \$	-	
Additional Two-Shifting of Existing Units	Υ		Y		
Total Capital Costs	\$	60.00	\$	200.00	
Load Shifting Programs					
Improved Wind Forecasting/yr	\$	0.10	\$	0.20	
Additional Thermal O&M (due to cycling) Total Variable Costs	\$	1.50	\$	3.00	
NPV Total	\$	60.00	\$	200.00	
	<u>Esti</u>	mated Cost	<u>Est</u>	imated Cost	
<u>785 Case</u>		<u>Low</u>		<u>High</u>	
New Gas CC Plant #1	\$	70.00	\$	100.00	
New Gas CC Plant #2	\$	70.00	\$	100.00	
New Gas CC Plant #3	\$	-	\$	100.00	
General Transmission Upgrades & Tieline	\$	170.00	\$	275.00	
Energy Storage	\$	-	\$	300.00	
Additional Two-Shifting of Existing Units					
Total Capital Costs	\$	310.00	\$	875.00	
Load Shifting Programs					
Improved Wind Forecasting/yr	\$	0.10	\$	0.20	
Additional Thermal O&M (due to cycling)/yr Total Variable Costs	\$	3.00	\$	6.00	
NPV Total	\$	310.00	\$	875.00	
	Esti	mated Cost	Est	imated Cost	
<u>900+ Case</u>		Low		<u>High</u>	
New Gas CC Plant #1	\$	70.00	\$	100.00	
New Gas CC Plant #2	\$	70.00	\$	100.00	
New Gas CC Plant #3	\$	70.00	\$	100.00	
General Transmission Upgrades & Tieline	\$	170.00	\$	540.00	
Energy Storage (pumped storage)	\$	200.00	\$	400.00	
Additional Two-Shifting of Existing Units Total Capital Costs	\$	580.00	\$	1,240.00	
Load Shifting Programs					
Improved Wind Forecasting/yr	\$	0.10	\$	0.20	

Additional Thermal O&M (due to cycling) Total Variable Costs	\$ 3.00	\$ 6.00
NPV Total	\$ 580.00	\$ 1,240.00
	2040 1600 355	
	254	
	729	
	150	
	3088	

Loads and Resources Outlook for NSPI - Winter 2014/2015 to 2019/2020	r NSPI - Wint	er 2014/2015 t	5 2019/2020			(
Habita WW missin MW extens	exept as noted.	No Maritime Link		(()	(
	ST02/\$107	2013/2016	7 1402/9102	8102/11/2018	2018/2019	(03 0\$/6t0\$
Firm Peak Edrecks (Base Logd) UU		06 4, i √890	1\896	1888		
Planning Reserve Required (20% Firm Peak)	818	U_{378}	378	378	378	378
Required Capacity (Firm Peak + Reserve)	2,270	2,268	2,270	2,266	2,268	2,267
Existing Resources	2,340	2,340	2,340	2,340	2,340	2,340
Resource Additions:						
Thermal		-120		-153		
Contracted Wind (Firm capacity)	23					
Biomass		55				
Community Feed-in-Tariff (Firm capacity)	ε	3	5	5		
Maritime Link Import						
Total Annual Additions	<i>L</i> 7	-62	5	-148	0	0
Total Cumulative Additions	<i>L</i> 7	-35	-30	-178	-178	-178
Total Firm Supply Resources	2,367	2,305	2,310	2,162	2,162	2,162
Surplus/ - Deficit	<i>L</i> 6	36	40	-104	-106	-105
Reserve Margin %	%57	22%	22%	14%	14%	14%

2315.1	153.3
2315.1	153.3
2315.1	153.3
2309.8	0.0
2304.8	0.0
2366.5	0.0

Retire Lin #2 and add BSD# Retire Lin #1 (-153)

Contracted Wind (Firm capacity) Biomass

Maritime Link Import

Community Feed-in-Tariff (Firm capacity)

REA wind (115.8 installed) MBPP & PHBM (10+45 =55)

Maritime Link Firm (153.25 MW)

7
æ
0
\perp
4
se
~
č
മ
_1
=
_

Loads and Resources Outlook for NSPI - Winter 2014/2015 to 2019/2020	r NSPI - Winte	er 2014/2015 t	0.2019/2020				
(All Values in MW except as noted) With Maritime Link	as noted) W	ith Maritime I	ink				
	2014/2015	2015/2016	- 1 102 /9 102	2017/2018	2018/2019	2019/2020	
Pegk)Honesagerttense tradition	KAT CZ	068,17CJ	/768.1/ \ \	TSASI!	8 20		(
Plarining Reserve Required (20% Firm Peak)	876	846/	<i>8Δ</i> ε\/ /	818 (())		8±£)	
Required Capacity (Firm Peak + Reserve) U	PLE'S D C	89 7 ,⊄	02,276	2,246	\$95.50 D		"
)					
Existing Resources	2,340	2,340	2,340	2,340	2,340	2,340	
Resource Additions:							
Thermal		-120		-153			
Contracted Wind (Firm capacity)	23						
Biomass		25					
Community Feed-in-Tariff (Firm capacity)	8	3	\$	8			
Maritime Link Import				153			
Total Annual Additions	27	-62	5	5	0	0	
Total Cumulative Additions	27	-35	-30	-25	-25	-25	
Fotal Firm Supply Resources	2,367	2,305	2,310	2,315	2,315	2,315	
Surplus/ - Deficit	<i>L</i> 6	36	40	49	47	48	
Reserve Margin %	%57	22%	72%	73%	22%	23%	

5.1 2315.1	
2315.1	
2315.1	
2309.8	0.0
2304.8	0.0
2366.5	0.0

Retire Lin #2 and add BSD# Retire Lin #1 (-153)

REA wind (115.8 installed) MBPP & PHBM (10+45 =55)

Contracted Wind (Firm capacity)
Biomass

Community Feed-in-Tariff (Firm capacity) Maritime Link Import

Maritime Link Firm (153.25 MW)

ML Base Load	ПО		0				$\neg \cap$		Π	Π			0													
	2014/2015			2017(12018)	2018/2019 /	2019/2020 /	2020/2021	2021/2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Firm Peak Forecast	1,891	1,890	1,892		1,890	1,88\$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,891	1,895	1,897		1,901		1,906	1,911	1,917	1,924	1,930	1,948	1,968	1,987	2,007	2,028	2,048	2,069	2,090
Planning Reserve Required (20% Firm Peak)	□ [378]	U 378 L	J U 3z8	378	378/	378	U 378	278	U3×3	279	19867	386	J 381	381	382	383	385	386	390	394	397	401	406	410	414	418
Required Capacity (Firm Peak + Reserve	2,270	2,268	2,270	2,266	2,268	2,267	2,267	2,269	2,274	2,276	2,278	2,281	2,285	2,288	2,293	2,301	2,308	2,315	2,338	2,361	2,385	2,409	2,433	2,458	2,483	2,508
	00.40	00.40	00.40	00.40	00.40	00.40	00.40	00.40	0040	0040	0040	0040	00.40	0040	0040	0040	0040	0040	00.40	00.40	00.40	00.40	0040	0040	0040	00.40
Existing Resources	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340	2340
Resource Additions (MW):																										
Thermal		-120		-153																						
Contracted Wind (Firm capacity)	23.2																									
Biomass		55																								
Community Feed-in-Tariff (Firm capacity)	3.3	3.3	5	5																						
Maritime Link Import				153																						
Assumed Unit Retirement Natural Gas Unit																-153 250					-153 250					
Total Annual Additions Total Cumulative Additions	26.5 26.5	-61.7 -35.2	5.0 -30.2	5.3 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	0.0 -25.0	97.0 72.1	0.0 72.1	0.0 72.1	0.0 72.1	0.0 72.1	97.0 169.1	0.0 169.1	0.0 169.1	0.0 169.1	0.0 169.1	0.0 169.1
Total Firm Supply Resources	2367	2305	2310	2315	2315	2315	2315	2315	2315	2315	2315	2315	2315	2315	2315	2412	2412	2412	2412	2412	2509	2509	2509	2509	2509	2509
,														1												2509
Surplus/ - Deficit	97	36	40	49	47	48	48	46	41	39	37	34	30	27	22	111	104	97	74	51	124	100	76	51	27	1
Reserve Margin %	25%	22%	22%	23%	22%	23%	23%	22%	22%	22%	22%	22%	22%	21%	21%	26%	25%	25%	24%	23%	26%	25%	24%	23%	21%	20%
	2366.5 0.0	2304.8 0.0	2309.8 0.0	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2315.1 0.1	2412.1 0.1	2412.1 0.1	2412.1 0.1	2412.1 0.1	2412.1 0.1	2509.1 0.0	2509.1 0.0	2509.1 0.0	2509.1 0.0	2509.1 0.0	2509.1 0.0

Retire Lin #2 and add I Retire Lin #1 (-153) REA wind (115.8 installed) MBPP & PHBM (10+45 =55) Thermal

Contracted Wind (Firm capacity)

Community Feed-in-Tariff (Firm capacity)

Biomass

Maritime Link Import

Maritime Link Firm (153.25 MW)

1	Reque	st IR-84:
2		
3	Regar	ding Synapse IR-18 Attachment 2:
4		
5	(a)	Please identify the capacity assumed for the each of the CC, CT and pumped-
6		storage plants assumed in the cost estimates for each case.
7		
8	(b)	Please provide the basis for the estimates of high and low capital costs for each plant
9		in each wind power case.
10		
11	(c)	Please provide the basis and derivation of the "General Transmission Upgrades &
12		Time Line" cost estimate for each wind power case.
13		
14	(d)	Please identify the specific transmission facilities included in each case.
15		
16	Respon	nse IR-84:
17		
18	(a)	CTs were assumed at 50 MW and 100 MW. References to CCs in lines 12-14 and 22-24
19		of the spreadsheet should be to CTs which is only a recognition that the 50 and $100\ MW$
20		units would not be combined cycle (CC) but simple cycle combustion turbines (CT).
21		There is no change to the economic values modeled. Pumped storage was estimated in
22		the range of 100 to 200 MW capacity.
23		
24	(b)	Referring to Synapse IR-18 Attachment 2, the low capital cost estimates for CTs were for
25		50 MW units. High capital cost estimates for CTs were for 100 MW units.
26		
27	(c-d)	Please refer to Synapse IR-55 Confidential Attachment 1.

1	Reque	est IR-85:	
2			
3	Regarding Synapse IR-5:		
4			
5	(a)	Please explain why NSPI cannot provide power-plant output data in its possession	
6		in response to discovery.	
7			
8	(b)	Please provide the data and analysis from which NSPI concluded that "based on the	
9		actual wind generation data, the Hatch study underestimated the wind capacity	
10		factors for the large wind installations in Pictou/Truro and Valley areas, while it	
11		overestimated the capacity factors in the Canso/Cape Breton area," including the	
12		actual wind capacity and energy output by month from each of the study areas.	
13			
14	(c)	The text of the response indicates that each NSPI-owned wind facility is included in	
15		Attachment 1, but Attachment 1 lists only Nuttby and Gulliver Cove.	
16			
17		(i) Please provide data for each of the other NSPI-owned farms, Digby and	
18		Point Tupper.	
19		(ii) If the Gulliver Cove wind plant is the Digby plant, please so state. Otherwise,	
20		please describe the Gulliver Cove wind plant.	
21			
22	Respon	nse IR-85:	
23			
24	(a)	Hourly generation data associated with Independent Power Producers (IPP) is third party	
25		data with commercial value, which is provided to NS Power for operational use, but is	
26		not owned by NS Power. Hourly wind generation associated with IPPs can be requested	
27		from IPPs who own the data. NS Power provided amalgamated hourly generation of all	
28		IPPs.	
29			
30	(b)	Please refer to Nova Scotia Wind Integration study by HATCH Ltd, table 4-2.	

1		http://www.gov.ns.ca/energy/resources/EM/Wind/NS-Wind-Integration-Study-FINAL.pdf
2		
3		Please also refer to SBA IR-67 and Can WEA IR-1 for the data required to calculate
4		actual IPP generator capacity factors.
5		
6	(c)	NS Power has full ownership in Gulliver Cove and Nuttby wind farms. NS Power is a
7		minority owner of Point Tupper wind farm and as such Point Tupper wind farm is
8		considered to be an IPP. Gulliver Cove is the Digby or Digby Neck wind farm.

NON-CONFIDENTIAL

1	Requ	est IR-86:	
2			
3	Reference response to Synapse IR-7:		
4			
5	(a)	Please describe the "system security" problem that caused each curtailment.	
6		Specifically, was the problem related to overloading of a specific line, minimum	
7		generation levels, or some other concern?	
8			
9	(b)	Please provide the duration of each curtailment listed.	
10			
11	(c)	Please provide the operational level of each wind plant prior to the curtailment.	
12			
13	(d)	Please provide the extent of each "partial" curtailment.	
14			
15		(i) Were the required curtailments stated as a fixed cap on the wind farm	
16		output, a required percentage reduction, or something else?	
17			
18	Respo	onse IR-86:	
19			
20	(a)	NS Power believes the question refers to Synapse IR-8. All wind curtailment events were	
21		due to reaching minimum safe generation levels, except for two Glen Dhu curtailments:	
22		2012-08-31 00:33 and 2012-09-01 05:45, which were due to transmission system	
23		constraints.	
24			
25	(b)		

DATE	Wind Farms	Level of Curtailment	Restored
2011-10-26 02:06	Bear Head	To 0 %	5:34
2011-10-20 02.00	Nuttby	To 0%	5:34

Date Filed: April 2, 2013 NSPML (CA) IR-86 Page 1 of 2

NON-CONFIDENTIAL

DATE	Wind Farms	Level of Curtailment	Restored
2011-12-08 05:45	Gulliver's Cove	To 33%	6:10
2011-12-08 03.43	Dalhousie	To 66%	6:04
	Glen Dhu	To 66%	2:25
	Lingan	To 33%	2:28
2012-07-20 03:42	Pubnico Point	To 66%	2:32
	Maryvale	To 0%	2:37
	Amherst	To 33%	2:40
2012 00 20 02 20	Gulliver's Cove	To 66%	3:00
2012-08-28 03:39	Dalhousie	To 66%	3:02
2012-08-31 00:33	Glen Dhu	To 33%	n/a.
2012-09-01 05:45	Glen Dhu	To 33%	9:48 – 10:07
2012-10-16 01:25	Nuttby	To 50%	3:48
2012-10-16 01:28	Bear Head	To 66%	3:48
2012-10-16 01:34	Glen Dhu	To 33%	3:48
2012-12-11 01:47	Lingan	To 66%	4:41
2012-12-11 01:50	Pubnico	To 66%	4:41
2012-12-11 01:54	Maryvale	To 0%	4:43
2012-12-11 01:55	Amherst	To 0 %	4:44
2012-12-11 01:57	Gulliver's Cove	To 66%	4:44
2012-12-11 02:04	Dalhousie	To 66%	4:45
2012-12-11 02:07	Nuttby	To 50%	4:46
2012-12-11 02:25	Bear Head	To 33%	4:47

1

2

(c) Hourly wind generation data is provided in Synapse IR-5 and the explanation in CA IR-85. Hourly IPP generation data is third party confidential. Please see CA IR-85.

3 4

5

(d) Please refer to part (b).

NON-CONFIDENTIAL

1	Reque	est IR-87:
2		
3	Refere	ence response to CA IR-26 and Appendix 6.02, p. 14:
4		
5	(a)	Since the curtailments listed in response to Synapse IR-7 include several farms that
6		are not included in the list of ERIS facilities, please explain how these curtailments
7		are relevant to ERIS service.
8		
9	(b)	Since the curtailments appear to have all been at low-load periods, between
10		midnight and 6 am, how do these curtailments support the claim that "When the
11		system is congested because of load, a generator with ERIS can be curtailed to allow
12		the transmission system to operate within acceptable transfer limits and hence
13		provides little in terms of capacity contribution to the system's reserve
14		requirements."
15		
16	(c)	Does NSPI agree that it has never curtailed a wind farm at high-load hours?
17		
18	Respo	nse IR-87:
19		
20	(a)	Wind generation curtailment or the redispatch of any form of generation can and will be
21		undertaken by the system operator to support system reliability. Wind generation
22		curtailment at low load would be the system operator's response to excess energy on the
23		power system and would be implemented after other redispatch measures are taken. All
24		generating facilities, regardless of the form of interconnection service, are subject to
25		system operator direction to support the reliability needs of the power system.
26		
27	(b)	It is correct that the majority of wind generation curtailments will happen at low load
28		periods. The accounting of firm generating capacity for the purpose of planning reserve
29		margin determination is a different consideration. Projects seeking ERIS transmission
30		interconnection forego the transmission upgrades necessary to guarantee the availability

Date Filed: April 2, 2013

NON-CONFIDENTIAL

of transmission capacity to allow their full available production at all times. Under most circumstances within NS Power's market operations, the conventional generation will back down to allow the renewable asset to operate. This enables the renewable electricity to be produced for RES compliance and achieves the displacement of fossil fired generation contemplated by the environmental legislation. However, at peak system load, the circumstances used in capacity planning, the full capacity of the firm generating assets and the capacity of the ERIS resource cannot both be counted as the transmission constraints will impose a cap on the sum of the two. Any capacity associated with the ERIS project (wind generation or otherwise) is not counted toward the firm system capacity.

(c) Yes, with the present level of wind on the system NS Power has not had to curtail a wind farm at high loads.

NON-CONFIDENTIAL

1	Reque	est IR-88:
2		
3	Refer	ence Response to CA IR-32:
4		
5	(a)	How is the fact "that the Atlantic region is winter peaking" relevant to the issue of
6		transmission through New Brunswick to New England?
7		
8	(b)	Please provide any evidence that since "the return of the largest generator on the
9		system, Pt Lepreau," the Atlantic region has been "minimum load constrained."
10		
11	(c)	Please provide any available data on the number of low-load hours when the
12		transmission from New Brunswick to New England has operated at maximum
13		capacity, since the return of Pt. Lepreau.
14		
15	(d)	Please provide the "preliminary stability simulations" that indicate that the second
16		transmission line would be required at or near 500 MW of wind in Nova Scotia.
17		
18	Respo	nse IR-88:
19	-	
20	(a)	The fact that the Atlantic region is winter-peaking and New England is summer-peaking
21		means that transmission interconnection from New Brunswick to New England is more
22		likely to be scheduled at limits in summer than in winter. Conversely, in winter, capacity
23		in the Atlantic region is more likely to be used to serve domestic load than export to New
24		England.
25		
26	(b)	Point Lepreau is a nuclear unit. It is a feature of nuclear generation technology that such
27		units are operated at "base load" levels and do not cycle on a daily basis. Therefore it
28		would be expected that the aggregate generation fleet in the Atlantic region with Point
29		Lepreau on-line would have less down-turn capability in times of light load than
30		otherwise would be the case without a large nuclear unit on-line.

Date Filed: April 2, 2013

1	(c)	Point Lepreau returned to commercial service on 2012-11-23 hence there has not been a
2		period of summer low load since Point Lepreau generation came back on-line. Reference
3		NB Power Press Release:
4		$\underline{http://www.nbpower.com/html/en/about/media/media_release/pdfs/ENPLSGNovember232012.p}$
5		$\underline{\mathrm{d}}\mathrm{f}$
6		
7	(d)	Please refer to CA IR-30.

NON-CONFIDENTIAL

1	Request IR-89:	
2		
3	Reference Response to CA IR-33:	
4		
5	Please describe the "out-of-merit redispatch of thermal generation in Cape Breton" t	hat
6	has been used to "handle" "ERIS issues for wind projects east of Onslow."	
7		
8	(a) If this redispatch consists of turning down thermal generation if wind generatio	n is
9	available, please explain what is "out-of-merit" about the dispatch.	
10		
11	Response IR-89:	
12		
13	Energy Resource Interconnection Service (ERIS) is defined in Section 3.2.1 of the NS Po	wer
14	Standard Generator Interconnection Procedures ¹ as:	
15		
16 17 18 19 20	"ER Interconnection Service allows Interconnection Customer to connect the Generating Facility to the Transmission System and be eligible to deliver the Generating Facility's output using the existing firm or non-firm capacity of the Transmission System on an 'as available' basis."	
21	The System Impact Study conducted for the Interconnection Customer seeking ERIS identification	fies
22	the transmission upgrades necessary to permit the proposed generation facility to operate at	full
23	output and identify the maximum output, at the time the study is performed, without require	ring
24	additional Network Upgrades.	
25		
26	The SIS conducted for the ERIS wind generation projects east of Onslow determined that	the
27	transmission interfaces Cape Breton Export and Onslow Import would exceed reliability limit	ts if
28	these projects displaced generation west of Onslow (e.g. gas-fired thermal generation in Halif	ax),
29	but would remain within limits if the proposed wind generation displaced thermal generation	east

¹ The NS Power Standard Generator Interconnection Procedures can be accessed at http://oasis.nspower.ca/sitensp/media/Oasis/RevisedGIPFeb102010.pdf

Date Filed: April 2, 2013 NSPML (CA) IR-89 Page 1 of 2

NON-CONFIDENTIAL

1	of On	islow, coal-fired generation in Cape Breton or Trenton. At the time these studies were
2	perfor	med (2007-2008) the historical marginal cost of coal was lower than natural gas. Therefore
3	assum	ing that the new wind generation displaces cheaper coal-fired generation in Cape Breton,
4	rather	than more expensive natural gas fired generation in Halifax, allowed NS Power to
5	"hand	le" these ERIS projects without Network Upgrades.
6		
7	(a)	Not all the thermal generation can be turned down to provide the transmission congestion
8		relief east of Onlow. Only thermal generation east of Onslow provides such relief. As

stated above, thermal generation east of Onslow is coal-fired. Thermal generation west of

Onslow is fired by oil or natural gas. When coal-fired generation is cheaper than gas/oil

fired generation, turning down that coal-fired generation constitutes an "out of merit"

dispatch. 12

1

9

10

11

1	Request IR-90:
2	
3	Please clarify whether NSPML believes that the Supplemental Energy fully compensates
4	Nova Scotia ratepayers for the transfer of facilities with a 50-year life at the end of 35-year
5	contract (Application, p. 79).
6	
7	(a) If so, please provide the basis for that belief.
8	
9	Response IR-90:
10	
11	Yes. The calculation of Supplemental Energy was part of the negotiation of the full Maritime
12	Link Project as outlined in the Application and fully represents the value of the adjustment of
13	amortization from 50 to 35 years as outlined in the Application on page 79, lines 15 - 23.
14	NSPML believes that this Project as a whole is the lowest long-term cost alternative available to
15	Nova Scotia customers.

1	Requ	est IR-91:
2		
3	Refer	ence CA IR-44:
4		
5	(a)	Please identify the hours in 2012 in which "NSPI has to start expensive diese
6		combustion turbines" to provide down-regulation.
7		
8	(b)	Please explain why NSPI backed the steam plants to minimum and started the
9		combustion turbines, rather than running the steam plant at slightly above
10		minimum to provide down-regulation.
11		
12	Respo	nse IR-91:
13		
14	(a-b)	Upon further investigation it was determined that dispatch described in the referenced IR
15		response was the result of circumstances other than those cited. CT dispatch was not to
16		provide down-regulation. We apologize for this error.

NON-CONFIDENTIAL

Request IR-92: 1

2

3 **Reference CA IR-44:**

4

- 5 Please identify the dates of the "Min to max swings of over 700 MW [that occur] on the NS
- 6 Power system today."

7

8 Response IR-92:

9

- 10 The following table provides the occurrence of 700 MW swings in load net of wind over the past
- 11 two years. NS Power expects the occurrence of these events to increase as more wind generation
- 12 is added to the power system.

13

				Start Load	End Load	Load Change
Start Date	Start Hour	End Date	End Hour	(MW)	(MW)	(MW)
1/18/2011	7:00-8:00 AM	1/19/2011	3:00-4:00 AM	1944	1241	-703
2/26/2011	2:00-3:00 AM	2/26/2011	6:00-7:00 PM	1102	1806	704
2/28/2011	7:00-8:00 AM	3/1/2011	2:00-3:00 AM	1903	1161	-742
11/21/2011	3:00-4:00 AM	11/21/2011	5:00-6:00 PM	690	1497	807
11/27/2011	5:00-6:00 PM	11/28/2011	4:00-5:00 AM	1494	791	-703
12/7/2011	5:00-6:00 PM	12/8/2011	4:00-5:00 AM	1534	753	-781
12/11/2011	2:00-3:00 AM	12/11/2011	5:00-6:00 PM	889	1616	727
12/14/2011	2:00-3:00 AM	12/14/2011	5:00-6:00 PM	922	1694	772
12/15/2011	8:00-9:00 AM	12/16/2011	4:00-5:00 AM	1513	765	-748
12/21/2011	8:00-9:00 AM	12/22/2011	3:00-4:00 AM	1548	838	-710
1/11/2012	4:00-5:00 AM	1/11/2012	5:00-6:00 PM	910	1613	703
1/12/2012	8:00-9:00 AM	1/13/2012	3:00-4:00 AM	1687	913	-774
1/17/2012	5:00-6:00 PM	1/18/2012	3:00-4:00 AM	1642	869	-773
1/23/2012	8:00-9:00 AM	1/24/2012	4:00-5:00 AM	1799	925	-874
10/19/2012	8:00-9:00 AM	10/20/2012	4:00-5:00 AM	1345	633	-712
12/4/2012	5:00-6:00 PM	12/5/2012	4:00-5:00 AM	1525	742	-783
12/10/2012	8:00-9:00 AM	12/11/2012	1:00-2:00 AM	1577	795	-782
12/11/2012	1:00-2:00 AM	12/11/2012	5:00-6:00 PM	795	1584	789

NON-CONFIDENTIAL

1 Request IR-93:

2

3 **Reference CA IR-49:**

45

(a) Please provide the GWh and MW contributed to the "base" load forecast each year by the higher residential heating saturation.

7 8

6

(b) Please provide the GWh and MW contributed each year to the "base" load forecast each year by the EV assumption.

10

9

11 Response IR-93:

12

13 (a-b) The data is shown in the table below.

14

	Additiona (cumul	0	Electric '	
Year	GWh	MW	GWh	MW
2015	38	9	2	0
2016	56	13	3	1
2017	75	17	4	1
2018	94	22	6	1
2019	114	26	7	2
2020	134	31	10	2
2021	154	35	12	3
2022	175	40	15	3
2023	195	45	18	4
2024	216	50	20	5
2025	237	54	23	5
2026	259	59	26	6
2027	280	64	29	7
2028	302	69	32	7
2029	324	74	35	8
2030	346	79	38	9
2031	368	84	41	9
2032	391	89	45	10

	Additiona (cumu	O	Electric '(cumul	
Year	GWh	$\mathbf{M}\mathbf{W}$	GWh	MW
2033	413	94	48	11
2034	435	99	51	12
2035	457	104	55	12
2036	479	109	58	13
2037	502	114	62	14
2038	524	119	65	15
2039	546	124	69	16
2040	568	129	73	17

4	•	st IR-94:
4 5		
5 (Refere	ence CA IR-51:
6	(a)	Please provide any available analysis of the effect on the economics of the Maritime
		Link of removing the PH load from the low load forecast.
7		
8	(b)	Please provide any available analysis of the effect on the economics of the Maritime
9		Link of removing the PH load from the high load forecast.
10		
11	(c)	The referenced NSUARB IR-78 does not respond to parts (b) and (c) of CA IR-51.
12		Please respond to those questions.
13		
14	Respon	nse IR-94:
15		
16 ((a-c)	As stated in NSUARB IR-78(c) and in accordance with the Load Retention Tariff, "PH
17		load is not factored into capacity planning." NSPML accepts the characterization that the
18		Alternatives Analysis filed in support of the Application is "planning work"; but the
19		Alternatives Analysis is not "capacity planning work". The Analysis contains NSPML's
20		available analysis relating to industrial load, and removes a generic industrial load
21		equivalent to the Port Hawkesbury facility from the low load forecast in 2019. The
22		difference between the High Load Scenario and the Low Load Scenario is greater than
23		the equivalent industrial load of the Port Hawkesbury facility.

1	Reque	est IR-9	5 :
2			
3	Refere	ence NS	SPI's 2013 ACE filing, pp. 27–28, and CA IR-69:
4			
5	(a)	Please	e identify where the Maritime Link application, especially Appendix 6.07,
6		includ	les the costs of each of the transmission projects listed as being related to the
7		Marit	ime Link:
8			
9		(i)	43677 Woodbine Substation Expansion
10		(ii)	43324 L6513 Rebuild/upgrade line terminals
11		(iii)	43678 Strait Crossing: Separate L-8004/L-7005
12		(iv)	43679 L-7015 ROW Modifications.
13			
14	(b)	Please	explain what entity would own each of these projects: NSPI for NSPML.
15			
16	(c)	Please	explain why the project is necessary to support the Maritime Link.
17			
18	Respo	nse IR-	95:
19			
20	(a)	Please	refer to NSUARB IR-32 (c). Of the costs listed, only the Woodbine Substation
21		costs v	were included in the Maritime Link Project application. The remaining transmission
22		projec	ts were identified in the project Application but will be submitted separately by NS
23		Power	. These costs are expected to be offset by revenues collected through the
24		transm	nission tariff.
25			
26	(b-c)		refer to CA/SBA IR-93 and NSUARB IR-32 (c). NSPML will own the Woodbine
27			ation Expansion during the term, at which time that asset would be transferred to
28		NS Po	wer. NS Power would own the other projects listed.

1	Request IR-96:
2	
3	Reference CA IR-70:
4	
5	Please identify where the Maritime Link application, especially Appendix 6.07, includes the
6	costs of each of the new 345kV interconnection with New Brunswick.
7	
8	Response IR-96:
9	
10	The Other Import alternative includes a new 345 kV interconnection with New Brunswick.
11	Please refer to CA/SBA IR-283 and Appendix 6.05 of the Application.

1	Request IR-97:
2	
3	Reference CA IR-71:
4	
5	Please explain the answers of "no" to parts (a) and (d), considering that NS Power must
6	pay Nalcor its full avoided cost for the energy delivered under these circumstances.
7	
8	Response IR-97:
9	
10	The "no" responses to CA IR-71 (a) & (d) are reflective of Nalcor's contractual rights not
11	providing an option to unilaterally put their energy to NS Power. Certain conditions need to exist
12	before the energy is directed to Nova Scotia, including (1) Nalcor would need to otherwise be
13	able to place a valid transaction into New England, (2) transmission is not available through
14	New Brunswick pursuant to the NBTUA, (3) no Force Majeure is applicable, and (4) there are no
15	system reliability constraints in Nova Scotia. The cost for that energy to NS Power will never be
16	higher than NS Power's avoided cost.

1	Reque	st IR-98:	
2			
3	Reference CA IR-77 Attachment 1:		
4			
5	The request was for the workpapers supporting the estimate. The attachment consists only		
6	of conclusory results.		
7			
8	(a)	Please explain how NSPML selected the post-2025 expansion plans for the ML and $$	
9		Higher Imports cases.	
10			
11	(b)	Please provide the derivation of page 2 of Attachment 1, including the amount of	
12		energy purchased, the price of the purchases, the avoided fuel and operating costs,	
13		and transmission and generation capital costs.	
14			
15	Respon	nse IR-98:	
16			
17	(a)	The resource plans for the Maritime Link Base Load case and the case with Higher	
18		Imports were developed from Strategist resource optimizations. The model is offered	
19		different options to select from and solves for the lowest long term cost taking into	
20		condsideration costs, environmental emission factors, planning reserve, energy and	
21		capacity requirements, and renewable requirements. The model determines the timing	
22		and types of resource to add in the plan to meet these constraints. Please refer to	
23		CA/SBA IR-351 (b) for further details about the model.	
24 25	(b)	Please refer to CA/SBA IR-331 parts (b) and (c) for the Strategist input and output	
26		reports. The annual planning period values shown on page 2 of Attachment 1 for the	
27		Maritime Link Base Load and the Higher Imports case are taken from the Strategist	
28		model. Strategist takes the input data, executes the run and produces the output results.	
29		There are no intermediate materials used to obtain these values.	