1	Requ	uest IR-283:
2		
3	With	reference to Application, Appendix 6.03, page 17 and Appendix 6.05, Figures 5 and 6:
4		
5	(a)	Please explain the relationship between the "Financial Assumptions" found on page
6		17 of Appendix 6.03 of the Application and the \$905 million transmission upgrade
7		costs referred to in lines 11-13 on page 124 of the Application and shown in Figures
8		6 of Appendix 6.05 of the Application. Please provide all calculations, including all
9		supporting spreadsheets (with original excel formulas intact) and other documents
10		related to the transmission upgrade costs used for the Other Imports alternative.
11		
12	(b)	Please confirm that the \$663M (2015\$) capital cost includes the \$385 million for
13		upgrades shown on the line labeled NB-HQ#3 in Figures 6 of Appendix 6.05 of the
14		Application or explain what cost to Nova Scotia has been assumed for upgrades to
15		the HQ-NB interface.
16		
17	(c)	Please confirm that the "NB-HQ#3" upgrades are those needed for a 500 MW firm
18		delivery from HQ as shown in Figure 5 of Appendix 6.05.
19		
20	(d)	If not, please explain what level of service can be attained with the "NB-HQ#3"
21		upgrades and compare that to the level of service that can be attained with the "NB-
22		HQ#2" upgrades.
23		
24	(e)	Please confirm that, according to Schedule 5 of the ECA, energy that is being
25		delivered that is above the Nova Scotia Block Associated Capacity is non-firm and
26		therefore subject to curtailment including the requirement to deliver Capacity to
27		other Nalcor customers.
28		

1	(f)	Please explain why the Other Imports alternative includes costs for 500 MW of firm
2		transmission when the Maritime Link will only provide firm transmission for the
3		Nova Scotia Block Associated Capacity.
4		
5	Respo	nse IR-283:
6		
7	(a)	The \$905M transmission upgrade cost corresponds to calculations for the 2015 NPV
8		Nova Scotia Tariff costs provided by WKM Energy Consultants. Please refer to CA IR-
9		58, Attachment 1 Electronic for the detailed spreadsheet. The tab to be referenced is
10		"HQ500Adj". NSPML uses values presented on this tab in deriving the inputs for the
11		Other Import case for modeling in Strategist. Specifically, the amount for capital to be
12		recovered in Nova Scotia rate base and the cost of transmission service through New
13		Brunswick for the capacity and energy. Please refer to Attachment 1 for a visual
14		reference of the values on this tab that were used as inputs to the Other Import case. The
15		calculations by WKM Energy Consultants also include an NPV estimation of the cost of
16		transmission service through New Brunswick for the capacity and energy and an amount
17		for "end effects". NSPML's Strategist model calculates these amounts. As per Appendix
18		6.03, page 17, the \$676M as spent, nominal capital is based on the WKM report, and is
19		derived as follows:
20		
21		a. NS Tariff Share of \$150M represents the share of NB-NS#1 that would be borne
22		by NS.
23		
24		b. NS Tariff Share of \$292M represents the share of NB-HQ#3 that would be borne
25		by NS.
26		
27		c. This totals \$442M. For the Other Import analysis, this amount was increased by a
28		factor of 50 percent due to:
29		
30		i. O & M/OATT costs (25 percent as per Appendix 6.05 of the Application).

1			
2		ii.	AFUDC (10 percent).
3			
4			The remaining 15 percent is comprised of the combination of the
5			following:
6			
7		iii.	Uncertainty surrounding the actual estimate amount.
8			
9		1V.	Uncertainty surrounding the amount of direct assignment Nova Scotia
10			would see.
11			
12		v.	To represent a potential P90 similar to the Maritime Link P90 capital cost
13			for the Ventyx analysis.
14			
15		d.	$292M + 150M = 442M \times 1.5 = 663 M, 2015$, escalated by 1 percent
16			per year to represent the as spent dollars that will become part of rate base,
17			or \$676M to rate base upon commercial operation.
18			
19	(b)	Confirmed. Pl	ease see (a) above for the amount of expected allocation to NS.
20			
21	(c)	Confirmed.	
22			
23	(d)	Please refer to	(c).
24			
25	(e)	Confirmed.	
26			
27	(f)	The Maritime	e Link also provides approximately an additional 80 MW of firm
28		transportation	in addition to the NS Block for a total of 250 MW firm. The Maritime Link
29		has a capacity	of 500 MW. It provides NS Power with 170 MW Firm supply purchase
30		from Nalcor.	Nalcor owns the remaining transmission rights to the capacity on the

1	Maritime Link so there is a dedicated path for Nalcor supply to Nova Scotia. When Nova
2	Scotia purchases additional energy from Nalcor, Nalcor has a path to deliver it. The Other
3	Import Alternative includes 165 MW firm supply and up to 335 MW of economy energy.
4	In order to ensure economy energy can be delivered to Nova Scotia, a firm path needs to
5	be secured by suppliers whereas Nalcor will have the rights of the Maritime Link (above
6	the NS Block firm rights). Please also see the response to CanWEA IR-54 (b).

Case HQ500Adi - 500 MV	NSPI Tran V HQ to NS	ismission S with Dir	Costs U ect Assi	nder NB gnment	OATT		
	1						
		2003/04	2008/09	2015/16	2050/51		
Capital upgrades (\$M)							
Project		Base	IPL/NRI	HQ/NS	-	VS Direct	
Total Cost (NS#1+HQ#3)	1		75	1050			
NS Tariff Share	2			150		292.0	
Net NB Tariff Cost	3-1-2-Direct		75	608	Ł	ľ	
Revenue Requirement (\$M)						/	
Transmission Service Rev Req	4 (Note)	80.5	91.0	140.8	219.7	/	 <u>\$150</u> M NS Tariff Share (NB-NS#1)
Usage (MW)							
Network	5	2100	2100	1900	2262		2442 IVI
Long term firm	9	720	1080	1580	1580		
Short term equivalent	7	300	250	200	200		
Total usage	8=5+6+7	3120	3430	3680	4042		
Tariff (\$/kW-yr)							244 ZIVI JU /0 (FUTURE UXIVI UALI COSTS, AFUDC,
Transmission Service	9-4/8*1000	25.8	26.5	38.3	54.4		Uncertainty regarding actual capital estimate
Nova Scotia Tariff costs (SM)							amount and NS Direct Assignment
NS Firm Reservation (MW)	9			500	200		
Annual charge	11-9*10/1000			19.1	27.18	27.18	percentage, rou capital cost
2015 NPV	12-npv(11)			315.5			- ¢¢¢3M J01E¢
Direct Assignment Charge	13-Direct*125%	1		365.0			
NSPI Tariff Additions	14-2*125%	/		187.5			
End Effects Share	15=3 *10% *5hare	94		41.9	л г		
Total 2015 NPV cost	16-12+13+14+1	5		910.0	4	68.95%	= \$676M 2017\$
Other TX Customer Costs							
Total Reservations	17	3120	3430	3180	3542	/	
Annual charge	18-17*9/1000			121.7	192.6		
Annual Base Tariff Cost	61			99.4	155.2		Note: The \$910M corresponds to the \$905M in Figure 6. It varies slightly due to
Share of Upgrade Costs	20-18-19			22.2	37.35		iterations performed to allocate costs between NS and Others at the prescribed
NPV Share	21-npv(22)			391.0			nercentages in Figure 6
End Effects Share	22=3*10% *Shar	a		18.9			
Total 2015 NPV Cost	23-21+22			409.9		31.05%	
Total Additional Cost vs Base	24			1313			
Total Tariff Recovery (35 yrs)				1259	95.9%		
Tariff End Effect (Year 35-45)	26-3*10%			60.8			
Total Cost Recovery	27=25+26			1320	100.5%		
							enerav evervwhere.

Marshall Report – Capital Cost

Marshall Report – Tariff Cost

Appendix A – Page 23	

Case HQ500Adj - 500 MW	HQ to NS wi	th Direct A	ssignme	t			
		2003/04	2008/09	2015/16 20	050/51		Transmission Service
Capital upgrades (\$M)							
Project		Base	IPL/NRI	HQ/NS	-	VS Direct	, \$38.26/kW-vr
Total Cost (NS#1+HQ#3)	1		75	1050			1
NS Tariff Share	2			150		292.0	
Net NB Tariff Cost	3=1-2-Direct		75	608			
Revenue Requirement (\$M)							<u>X 1000 kW/MW</u>
Transmission Service Rev Req	4 (Note)	80.5	91.0	140.8	219.7		\$19 13 M 2015\$
Usage (MW)							
Network	5	2100	2100	1900	2262		
Long term firm	9	720	1080	1580	15,80		
Short term equivalent	7	300	250	200	200		
Total usage	8=5+6+7	3120	3430	3680	4042		
Tariff (\$/kW-vr)				7			
Transmission Service	9=4/8*1000	25.8	26.5	38.26	54.4		Ancillary Service
			-]			¢Ε 11 /b/M_vr
Nova Scotia Tariff costs (ȘM)							1/γ ννη μειο
NS Firm Reservation (MW)	10			200	200		
Annual charge	11=9*10/1000			19.1	27.18	27.18	A JUU INIW-YF
2015 NPV	12=npv(11)			315.5			
Direct Assignment Charge	13=Direct *125%			365.0			
NSPI Tariff Additions	14=2*125%			187.5			
End Effects Share	15=3* 10% * <i>Share</i>			41.9			\$2.56 M 2015\$
Total 2015 NPV cost	16=12+13+14+15			910.0		68.95%	
Other Tx Customer Costs							
Total Reservations	17	3120	3430	3180	3542		\$2.63 M 20185 (PSC)
Annual charge	18=17*9/1000			121.7	192.6		
Annual Base Tariff Cost	19			99.4	155.2		
Share of Upgrade Costs	20=18-19			22.2	37.35		
NPV Share	21=npv(22)			391.0			219.71 MI + 22.63M
End Effects Share	22=3*10%*Share			18.9			
Total 2015 NPV Cost	23=21+22			409.9		31.05%	= >22.345M/yr 2018
Total Additional Cost vs Base	24			1313			
Total Tariff Recovery (35 yrs)	25=16-15+21			1259	95.9%		
Tariff End Effect (Year 35-45)	26=3*10%			60.8			
Total Cost Recovery	27=25+26			1320	100.5%		

						Appendix A – Page 20					
VSPI Transmission	Costs Und	er NB OAT	F				NSPI Transmi	ssion Cos	ts Under	NB OATT	
to NS with Direct	Assignme	ŧ				Base Case - No Upgrades	to the NB Sys	tem			
2003/04	2008/09	2015/16 2	050/51		Transmission Service		200	3/04 200	8/09 201	5/16 204	19/50
Base	IPL/NRI	HQ/NS	-	VS Direct	, \$38.26/kW-vr	Capital upgrades (\$M)					
1	75	1050		0.000		Project		Base IP	L/NRI H	Q/NS	
2 3=1-2-Direct	75	061 909		7.767		Total Cost (NS#1+HQ#3)	1		75	0	
						NS Tariff Share	2			0	
					AN INI ANY TOOOT V	Net NB Tariff Cost	3=1-2		75	0	
4 (Note) 80.	5 91.0	140.8	219.7		<u>\$19.13</u> M 2015\$	Revenue Requirements (\$M)					
310	0016 L	1000	1767			Transmission Service Rev Req	4=1-2-3	80.5	91.0	99.4	155.2
5 21 6 72 30	0 1080 0 250	1580 200	15.80		\$19.71 M 2018\$ (esc. by 1%/yr)	<u>Ancillary Services</u> System Control (Sched 1)	ŝ	4.5	7.9	9.1	18.1
8=5+6+7 312	0 3430	3680	4042		•	Voltage Control (Sched 2)	9	5.6	6.3	7.2	14.4
		Ы	~			Total Compulsory AS	7=5+6	10.1	14.2	16.3	32.5
9=4/8*1000 25.	8 26.5	38.26	54.4		Ancillary Service	Usage (MW)					
					\$5.11/kW-vr	Network	80	2100	2100	1900	2262
10		500	500			Long term firm	6	720	1080	1080	1080
11=9*10/1000		19.1	27.18	27.18	X 500 MW-yr	Short term equivalent	10	300	250	200	200
12=npv(11) 13=Direct*125%		315.5 365.0			X 1000 kW/MW	Total usage	11=8+9+10	3120	3430	3180	3542
14=2*125%		187.5				Tariffs (\$/kW-yr)	/				
15=3* 10% *5hare 16=12+13+14+15		41.9 910.0		68 95%		Transmission Service	12=4/11*1000	25.8	26.5	31.3	43.81
						Ancillary Services	13=7/11*1000	3.24	Ä	5.11	9.18
17 312	0 3430	3180	3542		\$2.63 M 2018\$ (esc. by 1%/yr)	Transmission Customer Costs (\$M)					
8=17*9/1000		121.7	192.6			Total Reservations	14=11			3180	3542
20=18-19		22.2	37.35			Tariff Annual charges	15=14*12/1000			99.4	155.2
21=npv(22)		391.0			\$19.71 M + \$2.63M	Uniform Escalation from 2015	15			1.300%	
2=3*10%*Share		18.9			ĆJJ JAFRA / JO4 GČ	2015 NPV Tariff Cost	16=npv(15)			1705	
23=21+22		409.9		31.05%	<pre>\$22.3471VIC45.345</pre>						
24		1313									
25=16-15+21		1259	95.9%								

Emera Newfoundland & Labrador

energy everywhere."

1 Request IR-284:

2

With reference to responses CA/SBA IR-7 and IR-8, referencing the response to CanWEA 3 4 IR-26, please confirm that absent the development of Muskrat Falls, the only expanded 5 wind or hydro generation resources available to Nova Scotia via Maritime Link until 2041 6 would be the recall energy from Upper Churchill Falls. 7 Response IR-284: 8 9 10 Once the Maritime Link is completed, Nalcor has 300 MW of recall energy available from the 11 Upper Churchill, which it could send to market through existing routes and the Maritime Link. 12 13 In addition, please see MPA IR-22 which explains the incremental resources which are and could 14 be available in NL prior to 2041.

		CONFIDENTIAL (Attachments Only)
]	Reque	st IR-285:
,	With 1	reference to response CA/SBA IR-12, please provide the following reports from the
1	list pro	ovided:
((a)	#1 – "Subsea Cable Corridor Survey – Cabot Strait" December 21, 2011, Fugro
		Geological Surveys, Inc., including Appendices and Enclosures.
((b)	#4 – "Sediment Transfer Study" June 8, 2012, CBCL Limited.
((c)	#8 - "Ice Risk Analysis for Cabot Strait Cable Crossing" December 2012, CCore.
((d)	#11 - "Cable Burial Study" August 2012, Intecsea.
	(-)	#12 (I. t
((e)	#15 – "Interpretation of Recent Survey Data Cabot Strait" February 10, 2012,
		AMGC.
1	Respoi	nse IR-285:
	1	
((a)	Please refer to Confidential Attachments 1 through 37.
((b)	Please refer to Confidential Attachment 38.
((c)	Please refer to Confidential Attachment 39.
((d)	Please refer to Confidential Attachment 40.
((e)	Please refer to Confidential Attachment 41.

Maritime Link CA/SBA IR-285 Attachments 1-41 REDACTED

CA/SBA IR-285

Attachments 1 to 41

have been removed due to confidentiality.

NON-CONFIDENTIAL

1 Request IR-286:

2

3	With reference to response CA/SBA IR-17, please clarify whether the "Route Geophysical
4	and Geotechnical Report (Fugro)" referenced in the response is the same as document #1
5	listed under the response to IR-12. Please provide a copy of the "Route Geophysical and
6	Geotechnical Report" by Fugro.
7	
8	Response IR-286:
9	
10	Yes, the referenced report in the response of CA/SBA IR-017 is the same as document #1 listed
11	under the response to CA/SBA IR-012.
12	
13	Please refer to SBA IR-285 Attachments 1 through 37.

NON-CONFIDENTIA	L
-----------------	---

1	Reque	est IR-287:
2		
3	With	reference to response CA/SBA IR-22(a) that Strategist can use dynamic
4	progra	amming to determine optimal retirement dates for resources:
5		
6	(a)	Please explain fully the cost and revenue logic that determines the year in which to
7		retire an existing generation unit.
8		
9	(b)	Please provide a table of all existing NSPI thermal generation units with columns
10		indicating the first year and the last year that retirement was considered in the
11		analysis runs with Strategist. If different first and last available years assumptions
12		were used across the runs, repeat the table for each run conducted.
13		
14	Respo	nse IR-287:
15		
16	(a)	Ventyx documentation is proprietary and confidential. General information concerning
17		Strategist may found at the Ventyx website:
18		http://www.ventyx.com/en/enterprise/business-operations/business-products/strategist
19		
20		A product overview may be found at:
21		http://www.ventyx.com/~/media/files/brochures/strategist-data-sheet.ashx?download=1
22 23	(b)	Please refer to CA/SBA IR-295 (a). In all cases, all thermal units except Lingan 1 and
24		Lingan 2 were considered for retirement in years 2020 through to 2040. Please refer to
25		CA/SBA IR-323 for details around the Lingan 1 and Lingan 2 retirements.

NON-CONFIDENTIAL

1 Request IR-288:

2	
3	With reference to response CA/SBA IR-24(c) that Ventyx documentation is proprietary
4	and confidential, please provide a description of Strategist modeling methods at a publicly-
5	available level in accordance with the type of information requested in IR-24(c).
6	
7	Response IR-288:
8	
9	General information concerning Strategist may found at the Ventyx website:
10	http://www.ventyx.com/en/enterprise/business-operations/business-products/strategist
11	
12	Ventyx describes Strategist functionality in the product brochure available on the vendor's
13	website:

14 <u>http://www.ventyx.com/~/media/files/brochures/strategist-data-sheet</u>

CONFIDENTIAL (Attachments only)

1 Request IR-289:

2

3 With reference to response CA/SBA IR-29, please provide the input data, assumptions, and 4 the quantitative results for each robustness scenario evaluated that are the basis for the 5 statement "All robustness scenarios tested showed the Maritime Link to be the lowest long-6 term cost Alternative." Provide the same 112 page output report for each robustness 7 scenario in electronic TXT file format, as was provided for one case in response to CA/SBA 8 **IR-277** Confidential Electronic Attachment 1. Provide the input data and assumptions for 9 each robustness scenario in electronic TXT file or Excel file format. 10 11 Response IR-289: 12 13 Please refer to Confidential Attachments 1 through 42 for the Strategist output and input reports 14 for each robustness scenario referenced in CA/SBA IR-29. The attachments and their associated 15 case are given in the table below. 16 17 Please refer to Attachment 43 for a table comparing the study period costs of the Maritime Link 18 to the Other Import and Indigenous Wind for the robustness scenarios that were tested. 19 20 Please refer to Attachment 44 for the resource plan for the Indigenous Wind Low Load case with 21 Additional Retirements. 22 23

Output Reports	Input Reports	Case	Revised Input
Attachment 1	Attachment 22	ML Base Load Case - Base ESAI Gas Prices	Synapse IR-33 Att 1
Attachment 2	Attachment 23	OI Base Load Case - Base ESAI Gas Prices	Synapse IR-33 Att 1
Attachment 3	Attachment 24	Wind Base Load Case - Base ESAI Gas Prices	Synapse IR-33 Att 1
	Attachment OF		Currence ID 22 Att 1
Attachment 4	Attachment 25	ML Base Load Case - High ESAI Gas & High ESAI Energy Prices	Synapse IR-33 Att 1
Attachment 5	Attachment 26	OI Base Load Case - High ESAI Gas & High ESAI Energy Prices	Synapse IR-33 Att 1
Attachment 6	Attachment 27	Wind Base Load Case - High ESAI Gas & High ESAI Energy Prices	Synapse IR-33 Att 1
Attachment 7	Attachment 28	ML Base Load Case - Low ESAI Gas & Low ESAI Energy Prices	Synapse IR-33 Att 1
Attachment 8	Attachment 29	OI Base Load Case - Low ESAI Gas & Low ESAI Energy Prices	Synapse IR-33 Att 1
Attachment 9	Attachment 30	Wind Base Load Case - Low ESAI Gas & Low ESAI Energy Prices	Synapse IR-33 Att 1
		······································	-)
Attachment 10	Attachment 31	ML Low Load Case - Base ESAI Gas Prices	Synapse IR-33 Att 1
Attachment 11	Attachment 32	OI Low Load Case - Base ESAI Gas Prices	Synapse IR-33 Att 1
Attachment 12	Attachment 33	Wind Low Load Case - Base ESAI Gas Prices	Synapse IR-33 Att 1
Attachment 13	Attachment 34	OI Base Load Case - High Gas and High ESAI Energy Price - Firm Import price based on High ESAI Energy	Synapse IR-33 Att 1
Attachment 14	Attachment 35	OI Base Load Case - Low Gas and Low ESAI Energy Price - Firm Import price based on Low ESAI Energy	Synapse IR-33 Att 1
Attachment 15	Attachment 36	OI Base Load Case - High ESAI Gas and High ESAI Energy Price - Firm Import price based on High ESAI Energy	Synapse IR-33 Att 1
Attachment 16	Attachment 37	OI Base Load Case - Low ESAI Gas and Low ESAI Energy Price - Firm Import price based on Low ESAI Energy	Synapse IR-33 Att 1
Attachment 17	Attachment 38	OI Base Load Case - Low Transmission Capital	\$442 M (\$2015)
Attachment 18	Attachment 39	OI Base Load Case - High Transmission Capital	\$820 M (\$2015)
Attachment 19	Attachment 40	Wind Low Load Case - Additional Retirements	Attachment 44
Attachment 20	Attachment 41	ML Base Load Case - Formula ROE Approach	2015: 10.08% 2016: 10.53% 2017-2040: 10.68%
Attachment 21	Attachment 42	OI Base Load Case - Formula ROE Approach	2015-2040: 10.68%

CONFIDENTIAL (Attachments only)

Maritime Link CA/SBA IR-289 Attachments 1-42 REDACTED

CA/SBA IR-289

Attachments 1 to 42

have been removed due to confidentiality.

Robustness Scenarios

Base Load Cases - Base			Additional Cost versus		Additional Cost versus
ESAI Gas Prices	Maritime Link (ML)	Other Import	ML Alternative	Indigenous Wind	ML Alternative
Study Period NPV \$M	15,481	15,939	458	16,347	866

Base Load, High ESAI Gas &			Additional Cost versus		Additional Cost versus
High ESAI Energy Prices	Maritime Link (ML)	Other Import	ML Alternative	Indigenous Wind	ML Alternative
Study Period NPV \$M	16,844	17,314	470	17,835	992

Base Load, Low ESAI Gas &			Additional Cost versus		Additional Cost versus
Low ESAI Energy Prices	Maritime Link (ML)	Other Import	ML Alternative	Indigenous Wind	ML Alternative
Study Period NPV \$M	14,371	14,850	479	15,235	864

Low Load Cases - Base ESAI		Additional Cost versus		Additional Cost versus	
Gas Prices	Maritime Link (ML)	Other Import	ML Alternative	Indigenous Wind	ML Alternative
Study Period NPV \$M	12,184	12,708	524	12,516	331

		Other Import	
		(Firm Import	
Base Load Cases - High Gas		based on High	Additional Cost versus
and High ESAI Energy Price	Maritime Link (ML)	ESAI Energy)	ML Alternative
Study Period NPV \$M	18,238	18,826	588

Base Load Cases - Low Gas		Other Import (Firm Import based on Low	Additional Cost versus
and Low ESAI Energy Price	Maritime Link (ML)	ESAI Energy)	ML Alternative
Study Period NPV \$M	14,767	15,180	413

		Other Import	
Base Load Cases - High		(Firm Import	
ESAI Gas and High ESAI		based on High	Additional Cost versus
Energy Price	Maritime Link (ML)	ESAI Energy)	ML Alternative
Study Period NPV \$M	16,844	17,649	806

		Other Import	
Base Load Cases - Low		(Firm Import	
ESAI Gas and Low ESAI		based on Low	Additional Cost versus
Energy Price	Maritime Link (ML)	ESAI Energy)	ML Alternative
Study Period NPV \$M	14,371	14,635	265

		Other Import-			
		Low		Other Import- High	
		Transmission	Additional Cost versus	Transmission	Additional Cost versus
Base Load Cases	Maritime Link (ML)	Capital	ML Alternative	Capital	ML Alternative
Study Period NPV \$M	16,209	16,238	29	16,623	413

Low Load Cases	Maritime Link (ML)	Indigenous Wind - Additional Retirements	Additional Cost versus ML Alternative
Study Period NPV \$M	12,221	13,210	989

	Maritime Link (ML)	Other Import	Additional Cost versus
Base Load Cases	Formula ROE	Formula ROE	ML Alternative
Study Period NPV \$M	16,294	16,525	231

Resource Plan

	Wind Low Load
	with Additional Retirements
	with Integration Costs
2015	Lin #2 retire
2016	
2017	
2018	
2019	Wind 250 MW
	CT 50 MW
	Lin #1 retire
2020	
2021	
2022	
2023	
2024	
2025	
2026	
2027	
2028	
2029	
2030	CC 250MW
	Coal Unit retire
2031	
2032	
2033	Coal Unit retire
2034	
2035	
	Coal Unit retire
2036	
2037	CT 100 MW
2038	CT 100 MW
	Coal Unit retire
2039	Wind 250 MW re-powered
2040	
Planning NPV \$B	9.200
Study NPV \$B	13.210

1 Request IR-290:

2

With reference to response CA/SBA IR-30(a), notwithstanding NSPI's "typical" use of a 25-year planning period, why did NSPI not make an exception for this study and use a Strategist Planning Period that ends no earlier than the end of the Maritime Link 35 year contract term in 2052? In your response, please justify why it is appropriate to calculate a NPV for an alternative that basically assumes history repeats itself over the latter one-third of the 35 year contract.

9

10 Response IR-290:

11

The majority of inputs are not forecasted out for the full 25 years so to extend the planning period has limited value given that most inputs are escalated by inflation by that point in time. This is the same treatment used for operating cost components in the end effects period; please refer to SBA IR-293 part (c). In terms of the capital costs, the Maritime Link would continue to depreciate to the end of its 35 year life in the end effects period. There would then be periodic replacement-in-kind of the asset in perpetuity. These operating and capital costs are appropriately reflected in the Study period NPV.

19

Non-financial inputs such as the load and the emission limits are assumed to continue at the 2040 values in the end effects period to reflect the greater uncertainty of these forecasts and assumptions beyond the long term 25 year view.

1 Request IR-291:

2

With reference to response CA/SBA IR-30(b), page 1, line 18 to page 2, line 2, please tabulate for each alternative (Maritime Link, Other Imports, and Indigenous Wind) and for each case (Base Load, Low Load, High Power and Gas Cost, and Low Power and Gas Cost) the contributions to NPV costs for the Planning Period and for the Study Period of capital costs for the Maritime Link, other transmission projects, wind generation, added gas-fired combined cycle and simple cycle combustion turbine plants, and any other capital investments affecting the extended study period.

10

11 Response IR-291:

12

Please refer to Synapse IR-54 Attachment 1. This attachment shows the contribution to capital costs made by each addition in each year of the planning period. The Capital costs for the High Power and Gas Prices and Low Power and Gas Prices are the same as the for Base Load cases. The same Base Load resource plans were used in these sensitivities; the resource plans were re-dispatched with the high/low power and gas prices which changes only the operating costs.

18

Strategist determines the end effects costs internally as a single net present value calculation and adds it to the planning period costs to give the study period costs. Please refer to SBA IR-331 part (b) for the output reports for these cases. The Study Period Plan Comparison in the last page of the output reports show the end effects value calculated by Strategist for each case. The study period costs of the Maritime Link case have been adjusted to account for the 35 year depreciation life of the Project versus the 50 year operating life. Please refer to SBA IR-334 (c) for the derivation of the adders.

NON-CONFIDENTIAL

1 Request IR-292:

2

With reference to response CA/SBA IR-30(b) first paragraph, for clarification of the definition of the study period provided, please confirm that it would be more accurate to add the word "period" after each of the two mentions of "end effects", or otherwise provide a more clear definition.

- 8 Response IR-292:
- 9

7

- 10 Yes, the definition of study period is:
- 11
- 12 Study Period = Planning Period + End Effects Period.

1	Reque	est IR-293:
2		
3	With	reference to response CA/SBA IR-30(b) second paragraph, please explain fully the
4	infinit	e period end effects calculations:
5		
6	(a)	Confirm that no costs are included for retirement of existing generation and
7		transmission assets or for the capital and operating costs of replacement assets for
8		existing assets that would be retired during the end effects period.
9		
10	(b)	Confirm that 2040 load was assumed for each year of the infinite end effects period,
11		or otherwise explain.
12		
13	(c)	Explain fully what assumptions are made to project fuel prices, energy prices,
14		capacity prices, and other cost and revenue components during the infinite end
15		effects period.
16		
17	Respo	nse IR-293:
18		
19	(a)	Confirmed.
20 21	(b)	Confirmed
22		
23	(c)	In the end effects period all cost and revenue items escalate at the implied rate calculated
24		from the final two years of the planning period. In this analysis the escalation rate for
25		each cost and revenue item would be the percent increase from 2039 to 2040.

NON-CONFIDENTIAL

1	Request IR-294:
-	

2

7 8 9

10

11

12

13

With reference to response CA/SBA IR-30(b) last sentence (page 1 line 28 to page 2 line 2)
regarding the need to apply an end effects method to not bias selection of resources, and
Response CA/SBA IR-27 Attachment 7, page 4 of 18, first two sentences of first new
paragraph:

- The systems were simulated in detail for the study period of 2015 through 2040 with the capital costs of each new generation resource charged at its escalating economic carrying cost. This approach treated projects of differing lives within the study period on a level playing field and eliminated the need to conduct an end effects analysis beyond 2040.
- (a) Please confirm or otherwise explain that Strategist has the cited alternative method
 for handling end effects, which is to not include an end effects period and instead
 only include real levelized annual capital costs for the portion of new resource lives
 that are within the Planning Period.
- 18
- 19 (b) Please explain why this simpler, alternative method for handling the end effects
 20 issue was not utilized by Ventyx for the Maritime Link application study, either for
 21 the 2015 through 2040 Planning Period used, or for a longer planning period ending
 22 2052, that would encompass the full Maritime Link contract life.
- 23

24 Response IR-294:

- 25
- 26 (a) Yes, Strategist can represent capital costs using escalating economic carrying charges
 27 which eliminates the need for an end effects analysis beyond the planning period.
- 28

(b) The annual stream of declining revenue requirements method was used in the analysis for
 this Application. This method assumes the asset's value decreases over time as the asset
 depreciates and is preferred over the economic carrying charge method because it is more
 representative of the actual annual costs of the Company and more closely matches the

1	economics of a regulated asset. The declining revenue requirements method also allows
2	for further cost analyses such as the determination of rate impacts. This method of
3	analysis has been used by NS Power as part of the business case for numerous capital
4	projects and has been accepted by the UARB in the past.

NON-CONFIDENTIAI	L
------------------	---

1	Reque	st IR-295:
2		
3	With r	reference to response CA/SBA IR-32(a-b):
4		
5	(a)	Please explain fully how NSPI's selection of unit retirement dates for each Strategist
6		run interacted with Strategist resource addition decisions. Was an iterative process
7		used in order to identify a good or optimal resource plan within the confines of each
8		Strategist alternative case?
9		
10	(b)	Please explain whether the method of handling retirements provides an exact or
11		approximately optimal (good) resource plan, given the Strategist model's objective
12		function and constraints, within the confines of each Strategist alternative case.
13		
14	Respon	nse IR-295:
15		
16	(a)	NS Power forecasted unit retirements outside of the Strategist model. An iterative process
17		was used to determine the number and timing of retirements as other forms of generation
18		or firm imports were added to the system to comply with environmental requirements.
19		For each case a preliminary Strategist optimization without retirements was examined to
20		see which units had reduced capacity factors. Possible unit retirements were examined to
21		ensure the planning reserve margin was maintained if those low capacity factor units
22		were to be retired. These retirements were included in a subsequent Strategist
23		optimization to determine the effect of the retirements on the resource plan in terms of
24		resources added and cost. In all cases, all thermal units except Lingan 1 and Lingan 2 $% \left({{{\left({{{\left({{{\left({{1}} \right)}} \right)}} \right)}} \right)} \right)$
25		were considered for retirement in years 2020 through to 2040. Please refer to CA/SBA
26		IR-323 for details around the Lingan 1 and Lingan 2 retirements.
27		
28	(b)	Although the retirements were not determined within the model, a Strategist optimization
29		was performed with those retirements as inputs and the resulting resource plan is the
30		optimal plan given those inputs.

1 Request IR-296:

2

With reference to response CA/SBA IR-37(b) line 19, please explain fully what is meant by ''no option.'' For example, was a 10% of output option not available through the negotiation process, considered but deemed inferior, or not considered.

6

7 Response IR-296:

8

9 Please see SBA IR 20 (c). It should also be pointed out that the goal of negotiations with Nalcor

10 was to displace one coal unit, which was considered the optimal amount at 20 percent. Anything

11 less than one unit would require the unit to stay running. More than one unit, but less than a full

12 additional unit, would also have the same effect.

1	Reque	est IR-2	97:
2			
3	With 1	referen	ce to response CA IR-44(a) and Attachment 1:
4			
5	(a)	Which	n, if any, of the identified pumped storage projects were included in either the
6		pre-sc	reening of alternatives or any of the Strategist modeling cases?
7			
8	(b)	If any	pumped storage projects were included Strategist modeling cases, what were
9		their a	assumed characteristics?
10			
11		(i)	Working storage capacity (m ³).
12			
13		(ii)	Head (m).
14			
15		(iii)	Full load operation hours.
16			
17		(iv)	Maximum generation capacity (MW).
18			
19		(v)	Maximum pumping capacity (MW).
20			
21		(vi)	Turn around efficiency.
22			
23		(vii)	Capital Cost.
24			
25		(viii)	Ancillary services capabilities.
26			
27			• Ramp rate on discharge (MW/sec).
28			
29			• Ramp rate pumping (MW/sec).

- 1 Response IR-297:
- 2
- 3 (a-b) Pumped storage or load control was assumed to be a component of the capital costs
- 4 associated with the integrating wind and not modeled specifically as referenced in part
- 5 (b), therefore the data requested is not available.

|--|

1	Reque	est IR-2	298:
2			
3	W	ith refe	erence to response CA IR-44(a) and Attachment 2 (CONFIDENTIAL):
4			
5	(a)	Were	any of the pumped hydro storage options at Wreck Cove described in
6		Attac	hment 2 Confidential considered as part of the Indigenous Wind Alternative in
7		the St	rategist cases modeled, and if not, why not?
8			
9	(b)	If one	or more Wreck Cove pumped storage project options were considered, please
10		provi	de the following for each:
11			
12		(i)	Option identification.
13			
14		(ii)	The amount of indigenous wind capacity that this pumped storage facility
15			would support in terms of reserve capacity, frequency control, and avoidance
16			of wind energy curtailment.
17			
18		(iii)	Assumed earliest available year of commercial operation.
19			
20		(iv)	Assumed capital cost.
21			
22		(v)	Assumed amortization life.
23			
24	Respo	nse IR-	298:
25			
26	(a-b)	The re	equirements for back-up of intermittent resources were determined outside of the
27		model	and included as a capital cost in the Indigenous Wind cases. They included a
28		compo	onent of pumped storage but not a specific project. Please refer to Synapse IR-18.

1 Reque	est IR-299:
---------	-------------

- 2
- 3 With reference to response CA/SBA IR-47(c), despite lack of ramp rate constraints in the
- 4 Strategist model, does it enforce minimum net operating capacity constraints during on-
- 5 line periods?
- 6

- 8
- 9 Yes, the Strategist model enforces minimum and maximum net operating capacity constraints
- 10 during on-line periods.

⁷ Response IR-299:

NON-CONFIDENTIAL

1 Request IR-300:

2 With reference to response CA/SBA IR-51(b), please also provide copies of other planning 3 4 studies, as requested, or confirm that only the cited IRPs have dealt with the issue of backup for intermittent resources. 5 6 7 Response IR-300: 8 9 Please refer to CA IR-44 Confidential Attachment 2. 10 11 Please refer to the Hatch wind integration study for NS Department of Energy available at the 12 following link: 13 14 http://www.gov.ns.ca/energy/resources/EM/Wind/NS-Wind-Integration-Study-FINAL.pdf 15 16 NS Power has examined the experiences of other jurisdictions many of which are discussed in

17 papers cited in the Bibliography of Appendix 6.02.

1	Request IR-301:
2	
3	With reference to response CA/SBA IR-58, please clarify what is meant by "unable."
4	
5	Response IR-301:
6	
7	The prehearing discovery process allows for discovery and disclosure of information that is
8	within the possession and/or control of the party that has received the Information Request; that
9	is, information and analysis that already exists. The process does not require new analysis or
10	work to be undertaken, although hearing participants are able to undertake their own analysis
11	based upon existing information or data.

1 Request IR-302:

2

3	With reference to response CA/SBA IR-64(c), please confirm our understanding that
4	Ventyx had no role in formulating the assumptions, data, run settings, and any other inputs
5	to the modeling of the resource alternatives and market scenarios, or otherwise explain.
6	
7	Response IR-302:
8	
9	In performing the optimizations, Ventyx would have adjusted run settings such as boundary
10	conditions to allow the model to determine a set of feasible combinations.
11	
12	In some cases, Ventyx would also have taken input assumptions and converted them into a
13	format that could be used within Strategist. For example, the revenue requirement profiles for the

14 three alternatives would have been put in a format that Strategist uses internally.

1	Requ	uest IR-303:
2		
3	With	reference to response CA/SBA IR-66(f-g) as it relates to request part (g), please
4	expla	in whether in addition to planning capacity constraints, Strategist also models for
5	each	time block:
6		
7	(a)	On-line operating reserve capacity constraints.
8		
9	(b)	Minimum generation constraints for a class of units, such as representing NPSI's
10		minimum steam unit generation constraint.
11		
12	Resp	onse IR-303:
13		
14	(a)	Yes. Strategist considers online spinning reserve requirement constraints.
15		
16	(b)	Strategist does not explicitly model a minimum steam generation constraint. The
17		minimum steam generation constraint was considered external to Strategist in order to
18		estimate curtailment and the resulting reduction of incremental wind generation capacity
19		factor which was provided to Strategist as an input.

1 Request IR-304:

2

3 With reference to response CA/SBA IR-68(d) page 2 lines 7-8, please clarify whether the 4 sentence means that Strategist is unable to model the minimum steam generation 5 commitment constraints by time block.

6

```
7 Response IR-304:
```

- 8
- 9 The question appears to reference CA/SBA IR-69 (d). As described in CA/SBA IR-303 (b),
- 10 Strategist does not explicitly model minimum steam generation constraints.

NON-CONFIDENTIAL

1 Request IR-305:	5:
-------------------	----

2

- 3 With reference to response CA/SBA IR-71(q), please clarify "decrease" should be replaced
- 4 with "multiplied", or otherwise explain.
- 5
- 6 Response IR-305:

7

8 Correct. The wording should reflect a factor of 80 percent. The word should be "multiplied".

NON-	CONE	FIDEN	TIAL
------	------	-------	------

1	D	4 ID 200
1	Requ	est IK-306:
2		
3	With	reference to response CA/SBA IR-75(e):
4		
5	(a)	With reference to Synapse IR-018 Attachment 2 - please confirm that the
6		Indigenous Wind runs for the case with integration costs includes \$300 million
7		dollars for energy storage.
8		
9	(b)	CA/SBA-75 Attachment 1 presents annual detailed capital cost results differences
10		for the Indigenous Wind runs for the cases with and without integration costs.
11		Please provide a similar table for operating costs or confirm that the same Strategist
12		run results were used for Indigenous Wind runs for the cases with and without
13		integration costs.
14		
15	(c)	If the same Strategist run results were used, please explain why a \$300 million
16		dollars energy storage investment was assumed to make no difference in the need
17		for wind curtailment or the dispatch of other generators.
18		
19	Respo	onse IR-306:
20		
21	(a)	Confirmed. NS Power included \$150 million for energy storage in the Indigenous Wind
22		low load case. \$300 million was included in the Indigenous Wind base load case.
23		
24	(b)	Yes, the operating costs were the same in the runs with and without wind integration
25		costs.
26		
27	(c)	It may be correct to assume a reduction in wind generation curtailment with the
28		development of pumped storage facilities. However, we have not included the operating
29		efficiency of the pump cycle which is similar to the curtailment levels and likely higher.

1	Request IR-307:
---	------------------------

2

3 With reference to Response CA/SBA IR-82(b), please explain whether the Other Import

4 alternative could have been scaled down to the same GWh size as for the Maritime Link.

5

6 Response IR-307:

7

8 The Other Import capability is identical to the Maritime Link, both at 500MW capability. Prior

- 9 to losses, the Other Import is actually smaller than the Maritime Link (963.6 GWh versus 986
- 10 GWh).

NON-	CONFI	DENTIAL
------	-------	---------

2

In your response to CA/SBA IR-91, you acknowledge that there is no specific mention of
the Nova Scotia Power Network Upgrades in the Nova Scotia Transmission Utilization
Agreement ("NSTUA"):

6

7 (a) Please explain why no specific mention of these upgrades is made in the NSTUA
8 whereas they feature prominently in the Application, on pages 143-145, Section 8.2.1
9 and NSPML is seeking UARB confirmation that these projects are currently
10 necessary for the Nalcor Surplus Energy to have a path through the Province.

11

12 (b) In your response you refer to Section 2.2. (d) in the NSTUA. Please explain why this 13 Section is sufficient to cover the provision of the upgrades whereas it is simply 14 noting that, absent the occurrence of Forgivable Events, the transmission capacity 15 of the Emera Facilities and the Emera Point-to-Point Transmission Service shall be 16 sufficient to allow transmission of the Nalcor Maximum Transmission Capacity 17 Level.

18

19 Response IR-308:

20

21 The NSTUA requires NS Power (via the Agency and Services Agreement) to provide a (a-b) 22 transmission path for an amount of energy equivalent to the Nalcor Maximum 23 Transmission Capacity Level. The important aspect to Nalcor is that a path exists, while 24 the importance to NS Power is to provide that path in accordance with the NSTUA. This path will be achieved through a combination of utilizing existing infrastructure, fleet 25 26 redispatch and/or network upgrades. No commitment was made for specific upgrades in 27 the NSTUA, as it is in Nova Scotia's best interests for NS Power to retain the optionality 28 as to how it will provide the transmission path in question.

NON-CONFIDENTIA	L
-----------------	---

9:

2

In your response to CA/SBA IR-93 (e-f) you note that, "...Absent the Nalcor Surplus Energy, reliability upgrades to the system aren't necessary. However, any upgrade to the system will provide an inherent reliability benefit to customers. The benefit results from greater capacity and enhanced system equipment..."

7

8 (a) Is it your position that the Nova Scotia Power Network Upgrades should be
9 classified as reliability upgrades to the Nova Scotia System?

10

(b) Please explain why the Nova Scotia Power Network Upgrades should not be
 classified as economic upgrades to the Nova Scotia System, intended to facilitate
 economic transfers by Nalcor, since by definition the Nalcor Surplus Energy is not
 part of the Nova Scotia Block.

15

16 (c) Please explain your statement that "...any upgrade to the system provides an
 inherent reliability benefit to customers..." Please also explain why "...greater
 capacity and enhanced system equipment..." necessarily provides a reliability
 benefit to Nova Scotia Customers.

20

21 (d) Please reconcile your statement that, "...any upgrade to the system provides an
 22 inherent reliability benefit to customers..." with your statement made in your
 23 response to CA/SBA IR-34 (a) that "...Transmission through New Brunswick does
 24 not provide any additional reliability..."

25

26 Response IR-309:

27

(a) Please refer to the Application in Section 8.2.1 for a justification for the potential
 upgrades. A transmission service request System Impact Study (SIS) is in progress, and
 preliminary results are found in McMaster IR-02 Confidential Attachment 1. The

NON-CONFIDENTIAL

1 Network Upgrades in the Application are provided to show the type and magnitude of the 2 expenditures, subject to completion of the SIS. The transmission service request system 3 impact study will provide additional information and will be included in the regulatory 4 approval requested for the projects when and if they are deemed necessary. It is 5 anticipated that the transmission revenues over the life of the project will offset the costs 6 of the capital upgrades and redispatch.

7

8

9

(b) Please see NSUARB IR-137 (a) (ii).

10 Additional transmission capacity and improved equipment will allow for greater (c) 11 flexibility when using the transmission system, such as during maintenance. Although not 12 "necessary" for the operation of existing and potential renewable generation, Network 13 Upgrades will help minimize out-of-merit generation dispatch and potential curtailment 14 of renewable energy resources that have interconnected using Energy Resource Network 15 Service. In the absence of the Maritime Link, the upgrade to L-6513 would allow for a 16 higher setting of the Import Monitor Special Protection System (SPS). Similarly, the 17 reconfiguration of L-8004 and L-7005 will increase arming level of the 345 kV SPS, 18 reducing risk of tripping thermal generation in Cape Breton.

19

(d) Response to CA/SBA IR-34 (a) was meant to reflect the lack of reliability benefits from
generation resources from the west, which are elsewhere committed. Response CA/SBA
IR-34 (b), on the other hand, highlights the benefits of increased tie-line capacity and
reinforced transmission capacity within New Brunswick, since such reinforcements
would greatly reduce the risk of Nova Scotia islanding and subsequent loss of firm load.

1 Request IR-310:

2

With reference to your response to CA/SBA IR-108, please provide in GWh/year the
energy attributable to the Supplemental Energy Block for two scenarios: (i) at Muskrat
Falls (i.e. inclusive of transmitssion losses), and (ii) at Woodbine (i.e. net of transmission
losses).

7

9

10 The Energy and Capacity Agreement (Appendix 2.03 to the Application) and in particular 11 Schedule 4 of that Agreement provides for the calculation of Supplemental Energy to be 12 calculated as delivered to Nova Scotia, net of losses. The current estimate of transmission losses 13 inherent in that calculation is 9.2 percent. In the body of the Application it was noted that the 14 Supplemental Energy as delivered to Nova Scotia (net of transmission losses) was estimated to 15 be 240,000 megawatt-hours per year (pages 79 and 120). The equivalent in gigawatt hours is 16 240. That amount was the calculation of Supplemental Energy at the time the alternatives 17 analysis was performed. Since then, we have updated the calculation and it currently is estimated 18 to be approximately 252 gigawatt-hours per year for the first five years. That amount (252 GWh) 19 was used in the calculation of the weighted average price of energy as outlined in Figure 4-4 and 20 in the response to NSUARB IR-37. Pursuant to Article 3 of Schedule 4 of the Energy and 21 Capacity Agreement, the calculation of Supplemental Energy will be finalized at a date 22 determined therein which is close to first commercial power.

⁸ Response IR-310: