1	Reque	est IR-1:
2		
3	With	respect to Section 3 of Exhibit M2:
4		
5	The p	proposed Maritime Link will consist of a hybrid arrangement of overhead and
6	under	ground dc transmission which is connected to ac transmission at both ends. Ideally,
7	high s	speed clearing of overhead line faults and rapid restart of the dc link would be
8	desira	ble. However, fast fault suppression capability and high speed dc breakers are new
9	and ev	volving technology for VSC HVDC.
10		
11	(a)	Please provide all stability and reliability studies carried out to determine the
12		acceptability of clearing dc line faults with dc breakers and ac breakers, and slow
13		restart with VSC-based HVDC.
14 15	(b)	Also, please indicate how slow is considered acceptable when compared with
16		LCC-based HVDC in which dc line faults are cleared rapidly and HVDC restarted
17		without mechanical breakers.
18		
19	Respon	nse IR-1:
20	-	
21	High-s	speed clearing is not a requirement for the Maritime Link. Clearing of DC faults is by
22	trippin	g the AC circuit breakers. In Newfoundland, the LIL controller responds to the rising
23	freque	ncy and ramps the import back. Operators then decide whether to re-instate and re-ramp
24	the lin	k within 10 minutes or commit reserves within Nova Scotia and the Maritime Area to
25	make u	up the loss on the Eastern Interconnection.
26		
27	(a-b)	High-speed clearing is not required and will not be employed. Studies concerning speed
28		requirements are therefore not relevant.

1	Requ	lest IR-2:
2		
3	With	respect to Section 3 and 4 of Exhibit M2:
4		
5	(a)	Please provide brief technical and cost information obtained from Vendors for
6		VSC-based HVDC.
7		
8	(b)	Please clarify whether the vendor information is for a system with dc line fault
9		suppression and rapid restart (without mechanical breakers) for hybrid OH and
10		cable transmission.
11		
12	Resp	onse IR-2:
13		
14	(a)	Please refer to CA/SBA IR-147 and CA/SBA IR-148.
15		
16		Early indicative cost estimates were secured from converter vendors to facilitate
17		comparisons of LCC and VSC technology, through a process of consultation. The
18		standalone cost of LCC is lower than VSC without the system upgrades LCC requires.
19		Based on an evaluation of system development costs under each option, a decision was
20		made to pursue only the VSC option. The decision is based upon the factors required to
21		attain a cost-effective technical solution.
22		
23		Subsequent design development at the conceptual and functional design stage included
24		development of functional requirements for the VSC installations, and design of electrical
25		interconnection requirements and civil/structural site development. This led to the
26		preparation of the mini-spec included in Hingorani IR-10, which was issued to vendors
27		for budget pricing. A summary of the budget pricing received from vendors is provided
28		in Hingorani IR-10.
29		
30	(b)	The mini-spec did not include provision for dc fault suppression and rapid restart.

Maritime Link Project (NSUARB ML-2013-01) NSPML Responses to UARB - Hingorani Information Requests

1	Requ	est IR-3:
2		
3	With	respect to Section 3and 4 of Exhibit M2:
4		
5	(a)	Please provide technical and cost information obtained from Vendors for LCC-
6		based HVDC.
7		
8	(b)	Please clarify whether this vendor information is for a system with dc line fault
9		suppression and rapid restart (without mechanical breakers) for hybrid OH and
10		cable transmission.
11		
12	Respo	onse IR-3:
13		
14	(a)	Please refer to UARB IR-2.
15		
16		During the conceptual and functional design stage, further definition was prepared for the
17		functionality of the converters, along with preliminary design of the electrical
18		interconnections and the civil/structural works at the converter stations. Based on this
19		work, the mini-spec was prepared for VSC technology only (provided in
20		Hingorani IR-10) and issued to vendors for budget pricing. At this stage, the converter
21		prices for VSC technology were found to be somewhat higher than the indicative pricing
22		secured during vendor consultations (pricing information provided in Hingorani IR-10).
23		
24	(b)	For the Maritime Link there is no requirement for rapid restart.

1	Requ	est IR-4:
2		
3	With	respect to Section 3 of Exhibit M2:
4		
5	To re	duce the exposure to frequent faults on the overhead dc line,
6		
7	(a)	Was any consideration given to a cable sea entry point near Bottom Brook so that a
8		VSC-based HVDC with no overhead line in Newfoundland would result?
9		
10	(b)	Alternatively, was an underground cable from Bottom Brook to Cape Ray or
11		relocating the converter station to Cape Ray considered?
12		
13	(c)	Were similar routing alternatives to minimize the amount of overhead line in Nova
14		Scotia to Woodbine (i.e. cable landing site closer to Woodbine or greater use of
15		underground cable) considered?
16		
17	(d)	Please provide information from Vendors on any all-cable based VSC-based
18		alternatives (with no overhead dc line) provided.
19		
20	Respo	onse IR-4:
21		
22	(a)	Yes, an alternate landing further along the west coast was considered. Due to the cost of
23		cabling, it was screened out as an option.
24		
25	(b)	Due to the high cost of underground cable, plus the number of river crossings along the
26		route, the underground option was eliminated. Relocation of the converter to Cape Ray
27		was considered, and was dismissed due to the higher cost of AC transmission
28		construction from Bottom Brook to Cape Ray.

Maritime Link Project (NSUARB ML-2013-01) NSPML Responses to UARB - Hingorani Information Requests

1	(c)	Yes, initial development considered a converter station at Lingan. This was abandoned
2		due to cost and difficulty of crossing TransAtlantic telecommunications cables, 230 kV
3		GIS substation requirements and system transmission costs.
4		
5	(d)	No vendor pricing was solicited for an all-cable option for the reasons noted above.

1	Request IR-5:
2	
3	With respect to P41 Line 7-11 of Exhibit M2:
4	
5	Preamble: Power reversal capability is a disadvantage for LCC Converter based Link
6	because the cable and transformers have to be designed with voltage reversal capability
7	which would be more expensive. VSC does not have polarity reversal. Two way transfer
8	capability therefore costs more than one-way capability particularly for LCC-based
9	technology.
10	
11	Please provide information on the value of Power Reversal capability.
12	
13	Response IR-5:
14	
15	The Maritime Link is being designed for use of VSC technology, and the cost premiums
16	applicable to LCC technology for power reversal are not applicable for voltage source
17	converters. The systems on both ends of the Maritime Link are being upgraded initially to
18	accommodate the 500 MW forward flow from Newfoundland to Nova Scotia. With these
19	upgrades in place, system studies have indicated that reverse power flow of 100-250 MW can be
20	accommodated subject to transmission system conditions, and NSPML does not plan to make
21	any investments in system upgrades to facilitate expansion of these reverse flow limits.
22	
23	The value of power reversal capability principally accrues to Nalcor, in low-probability
24	contingency events involving loss of both poles of the Labrador-Island Link. Under such
25	circumstances, it may be possible for Nova Scotia to provide emergency support for the resulting
26	capacity shortage in Newfoundland.

1	Reque	est IR-6:
2		
3	With	respect to P43 Line 8-15 of Exhibit M2:
4		
5	(a)	Please provide information on the approximate AC Effective Short-Circuit Capacity
6		at each converter connection point.
7		
8	(b)	How much additional dynamic reactive power would be needed for LCC option?
9		
10	Respo	nse IR-6:
11		
12	(a)	At the Woodbine 345 kV terminal, the minimum short-circuit capacity with transmission
13		normal conditions is 1900 MVA. The effective short -circuit capacity will be just below
14		1900 MVA. At Bottom Brook the minimum short-circuit ratio with transmission normal
15		conditions is just below 900 MVA. All reactive support will be provided by the VSC with
16		the exception of any low capacity high-frequency filter included with the converter.
17		
18	(b)	At Woodbine 345 kV, the LCC itself requires approximately 300 MVAr. Options to
19		provide this include shunt capacitors and filters and converting Lingan units for
20		synchronous condenser operation. At Bottom Brook, in addition to the reactive power
21		required to supply the converter, there is also a requirement to supply dynamic reactive
22		support to the 230 kV system on contingency (contingency reserves) of over 200 MVAr.
23		These factors considered Bottom Brook is not considered a viable terminal for a
24		conventional LCC converter alone.

1	Request IR-7:
2	
3	With respect to Section 3 of Exhibit M2:
4	
5	Please provide information obtained from Vendors on dc breakers and high speed clearing
6	of dc line faults for VSC–based HVDC with OH or Hybrid OH-Cable line.
7	
8	Response IR-7:
9	
10	As indicated in Hingorani IR-1, high-speed clearing for dc faults is not a requirement. Faults are
11	cleared by the AC circuit breaker. During the final design, any requirements for default clearing
12	will be assessed with vendors. NSPML is aware of the industry developments in this area.

1	Request IR-8:
2	
3	With respect to Section 3 of Exhibit M2:
4	
5	Preamble: LCC would have lower losses compared to VSC.
6	
7	Please provide information on the value of losses for NSPI and value given to Vendors
8	for procurement purposes.
9	
10	Response IR-8:
11	
12	The request for proposals (RFP) from vendors is currently being assembled and therefore cannot
13	be provided at this time. The value of losses are being finalized and will be included in the
14	comparison of proposals. The converter losses for the VSC is higher than LCC with the extent
15	depending on the technology. Current VSC technologies can achieve losses at rated load which

16 are an additional 0.2 percent more than the LCC technology.

1	Request IR-9:
2	
3	With respect to P41 Line 1-6 of Exhibit M2:
4	
5	Please provide information on the estimated losses which would be deducted from NSPI
6	share of 170 MW.
7	
8	Response IR-9:
9	
10	Please refer to footnote 17 on Page 33 of the Application, and to NSUARB IR-13.

Maritime Link Project (NSUARB ML-2013-01) NSPML Responses to UARB - Hingorani Information Requests

CONFIDENTIAL (attachments only)

1	Reque	est IR-10:
2		
3	With 1	respect to P40 line 11-18 of Exhibit M2:
4		
5	Please	provide:
6		
7	(a)	Information on preliminary Technical Specifications shown to HVDC Converter
8		Vendors (ABB, Siemens, Alstom)
9		
10	(b)	Please provide technical and cost information from Vendors for both VSC and LCC
11		options.
12		
13	Respo	nse IR-10:
14		
15	(a)	Please refer to Confidential Attachment 1.
16		
17	(b)	Please refer to Confidential Attachment 2. Cost information on an LCC option was not
18		requested.

UARB-Hingorani IR-10 Attachment 1 has been removed due to confidentiality.

UARB-Hingorani IR-10 Attachment 2 has been removed due to confidentiality.

1	Request IR-11:
2	
3	With respect to Section 3 of Exhibit M2:
4	
5	Preamble: VSC Converters do not have significant overload capability. For loss of one
6	pole, LCC-based HVDC converters can provide 33% overload, for very small additional
7	cost and even 100% overload for reasonable time with modest extra cost.
8	
9	Please provide information on overload capability needed for loss of one pole, including
10	information from Vendors on overload capability of their VSC and LCC converters.
11	
12	Response IR-11:
13	
14	No additional overload capability is required. Depending on ML loading at the time of a pole
15	outage, the remaining pole is available to ramp to its full 250 MW rating on the sending end.
16	Any shortfalls realized at that time can be met in the short term via system interconnections and
17	in the longer term through generation redispatch or suspension of exports.

1	Request IR-12:
2	
3	With respect to Figure 4-1, page 76 of Exhibit M2:
4	
5	Please provide information on how the cost of \$450 M for converters was derived including
6	information from Vendors or other prior projects.
7	
8	Response IR-12:
9	
10	The \$450 M covers the cost of the work scope associated with the two converters. It includes all
11	infrastructure related to the integration of the two converters, which includes: site preparation,
12	converter equipment, substations, grounding systems, buildings, site protection, storage facilities.
13	For the converter stations alone, a "mini-specification" was developed to provide high-level
14	functional specifications for the converters, which was sent to three international vendors for
15	budget quotations. In parallel with this vendor pricing, the project engineering consultants
16	prepared an independent estimate based on past projects implemented using VSC technology.
17	The base EPC cost for the converter island was chosen based on consideration of the three
18	vendor prices and the consultant's estimate.
19	
20	The balance of the converter cost category was estimated by the engineering consultant, based on
21	completed engineering, vendor equipment price quotations and construction cost quotations. The
22	design development for the balance of plant was consistent with a DG2 level plan, where plan
23	drawings and layouts were developed to facilitate preparation of bills of materials and
24	construction quantities that were used to solicit vendor and contractor estimates. All estimates
25	included appropriate contingency based on the level of uncertainty at the conclusion of the
26	design development.

1	Request IR-13:
2	
3	With respect to Section 3 of Exhibit M2:
4	
5	Was VSC-based HVDC with all cable transmission considered as a competitive
6	procurement option and if not please explain why not?
7	
8	Response IR-13:
9	
10	Please refer to NSUARB IR-39.

1	Request IR-14:
2	
3	With respect to Section 3 of Exhibit M2:
4	
5	Was LCC-based HVDC with needed reactive power and filters considered for competitive
6	procurement option and if not please explain why not?
7	
8	Response IR-14:
9	
10	Please refer to Hingorani IR-6 and Hingorani IR-4.
11	
12	In the initial planning stage, indicative cost estimates were secured from LCC and VSC vendors,
13	and system studies were undertaken to identify system requirements for integration of both LCC
14	and VSC technology into the system. These studies identified requirements under the LCC
15	scenario for dynamic VAr support in Cape Breton (not needed in the VSC scenario), additional
16	dynamic VAr support in Newfoundland, and a prospective requirement to relocate the Bottom
17	Brook converter. Considering the capital costs for the alternative converter technologies, the
18	capital costs for the corresponding system upgrades, and costs of losses for the two systems, a
19	decision was made to proceed with VSC technology. LCC pricing was not requested as part of
20	the "mini-specification" and vendor pricing solicitation.

1	Request IR-15:
2	
3	With respect to Section 3.3.3 Exhibit M2:
4	
5	Please explain what measures will be taken to prevent fish from entering the electrode
6	pond or being attracted to the barrier for the pond.
7	
8	Response IR-15:
9	
10	The grounding system will be designed in accordance with all pertinent standards and
11	regulations, and methods of addressing concerns for aquatic wildlife are well established in
12	application of shore grounding sites around the world. Details of measures to protect fish and
13	wildlife are part of the Environmental Assessment process, and the final design of the grounding
14	site will be consistent with all requirements identified in the EA process.